The stable rank of crossed products of sectional $C^ *$-algebras by compact Lie groups
HTML articles powered by AMS MathViewer
- by Eckart Schulz
- Proc. Amer. Math. Soc. 112 (1991), 733-744
- DOI: https://doi.org/10.1090/S0002-9939-1991-1042272-3
- PDF | Request permission
Abstract:
Let $X$ be a second countable, locally compact Hausdorff space, and let a compact Lie group $D$ act on a ${{\text {C}}^ * }$-bundle $(E,X)$, the fibres of which are of bounded, finite dimension. Denote by $A$ the ${{\text {C}}^ * }$-algebra of sections vanishing at infinity, and by $\hat \alpha$ the induced action of $D$ on $A$. The stable ranks of both, the fixed point algebra ${A^{\hat \alpha }}$ and the crossed product algebra $A{ \times _{\hat \alpha }}D$ are determined.References
- Glen E. Bredon, Introduction to compact transformation groups, Pure and Applied Mathematics, Vol. 46, Academic Press, New York-London, 1972. MR 0413144
- Ryszard Engelking, Teoria wymiaru, Biblioteka Matematyczna, Tom 51. [Mathematics Library, Vol. 51], Państwowe Wydawnictwo Naukowe, Warsaw, 1977 (Polish). MR 0482696
- Bruce D. Evans, $C^{\ast }$-bundles and compact transformation groups, Mem. Amer. Math. Soc. 39 (1982), no. 269, vii+63. MR 668809, DOI 10.1090/memo/0269
- J. M. G. Fell, The structure of algebras of operator fields, Acta Math. 106 (1961), 233–280. MR 164248, DOI 10.1007/BF02545788 J. M. G. Fell and R. S. Doran, Representations of ${C^*}$-algabras, locally compact groups, and Banach $*$-algebraic bundles, vol. 1, Academic Press, 1988.
- Philip Green, The local structure of twisted covariance algebras, Acta Math. 140 (1978), no. 3-4, 191–250. MR 493349, DOI 10.1007/BF02392308
- Ru Ying Lee, On the $C^*$-algebras of operator fields, Indiana Univ. Math. J. 25 (1976), no. 4, 303–314. MR 410400, DOI 10.1512/iumj.1976.25.25026
- Lynn H. Loomis, An introduction to abstract harmonic analysis, D. Van Nostrand Co., Inc., Toronto-New York-London, 1953. MR 0054173
- Calvin C. Moore, Group extensions and cohomology for locally compact groups. III, Trans. Amer. Math. Soc. 221 (1976), no. 1, 1–33. MR 414775, DOI 10.1090/S0002-9947-1976-0414775-X
- Victor Nistor, Stable rank for a certain class of type $\textrm {I}$ $C^\ast$-algebras, J. Operator Theory 17 (1987), no. 2, 365–373. MR 887231
- Armand Borel, Seminar on transformation groups, Annals of Mathematics Studies, No. 46, Princeton University Press, Princeton, N.J., 1960. With contributions by G. Bredon, E. E. Floyd, D. Montgomery, R. Palais. MR 0116341
- John Phillips and Iain Raeburn, Crossed products by locally unitary automorphism groups and principal bundles, J. Operator Theory 11 (1984), no. 2, 215–241. MR 749160
- Marc A. Rieffel, Actions of finite groups on $C^{\ast }$-algebras, Math. Scand. 47 (1980), no. 1, 157–176. MR 600086, DOI 10.7146/math.scand.a-11882
- Marc A. Rieffel, Dimension and stable rank in the $K$-theory of $C^{\ast }$-algebras, Proc. London Math. Soc. (3) 46 (1983), no. 2, 301–333. MR 693043, DOI 10.1112/plms/s3-46.2.301
- Jonathan Rosenberg, Some results on cohomology with Borel cochains, with applications to group actions on operator algebras, Advances in invariant subspaces and other results of operator theory (Timişoara and Herculane, 1984) Oper. Theory Adv. Appl., vol. 17, Birkhäuser, Basel, 1986, pp. 301–330. MR 901077
- Albert Jeu-Liang Sheu, A cancellation theorem for modules over the group $C^\ast$-algebras of certain nilpotent Lie groups, Canad. J. Math. 39 (1987), no. 2, 365–427. MR 899843, DOI 10.4153/CJM-1987-018-7
- Keith F. Taylor, $C^*$-algebras of crystal groups, The Gohberg anniversary collection, Vol. II (Calgary, AB, 1988) Oper. Theory Adv. Appl., vol. 41, Birkhäuser, Basel, 1989, pp. 511–518. MR 1038354
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 112 (1991), 733-744
- MSC: Primary 46L55; Secondary 22D25, 46L05
- DOI: https://doi.org/10.1090/S0002-9939-1991-1042272-3
- MathSciNet review: 1042272