On infinitely differentiable and Gevrey vectors for representation
HTML articles powered by AMS MathViewer
- by A. F. M. ter Elst
- Proc. Amer. Math. Soc. 112 (1991), 795-802
- DOI: https://doi.org/10.1090/S0002-9939-1991-1045134-0
- PDF | Request permission
Abstract:
In the present paper we give a condition in order that the set of infinitely differentiable vectors for a representation $\pi$ in a Banach space be equal to the set of all infinitely differentiable vectors for the restriction of $\pi$ to a subgroup. Similar results for Gevrey vectors and analytic vectors are proved for unitary representations.References
- François Bruhat, Sur les représentations induites des groupes de Lie, Bull. Soc. Math. France 84 (1956), 97–205 (French). MR 84713, DOI 10.24033/bsmf.1469
- Antonius Frederik Maria ter Elst, Gevrey spaces related to Lie algebras of operators, Technische Universiteit Eindhoven, Eindhoven, 1989. Dissertation, Technische Universiteit Eindhoven, Eindhoven, 1989; With a Dutch summary. MR 1028061
- Gerald B. Folland, Introduction to partial differential equations, Mathematical Notes, Princeton University Press, Princeton, N.J., 1976. Preliminary informal notes of university courses and seminars in mathematics. MR 0599578, DOI 10.1515/9780691213033
- Lars Gårding, Note on continuous representations of Lie groups, Proc. Nat. Acad. Sci. U.S.A. 33 (1947), 331–332. MR 21943, DOI 10.1073/pnas.33.11.331
- Roe W. Goodman, One-parameter groups generated by operators in an enveloping algebra. , J. Functional Analysis 6 (1970), 218–236. MR 0268330, DOI 10.1016/0022-1236(70)90059-5
- Roe Goodman and Nolan R. Wallach, Whittaker vectors and conical vectors, J. Functional Analysis 39 (1980), no. 2, 199–279. MR 597811, DOI 10.1016/0022-1236(80)90013-0
- Edward Nelson, Analytic vectors, Ann. of Math. (2) 70 (1959), 572–615. MR 107176, DOI 10.2307/1970331
- Neils Skovhus Poulsen, On $C^{\infty }$-vectors and intertwining bilinear forms for representations of Lie groups, J. Functional Analysis 9 (1972), 87–120. MR 0310137, DOI 10.1016/0022-1236(72)90016-x
- Derek W. Robinson, Lie groups and Lipschitz spaces, Duke Math. J. 57 (1988), no. 2, 357–395. MR 962512, DOI 10.1215/S0012-7094-88-05717-1
- Michael E. Taylor, Noncommutative harmonic analysis, Mathematical Surveys and Monographs, vol. 22, American Mathematical Society, Providence, RI, 1986. MR 852988, DOI 10.1090/surv/022
- Albert Wilansky, Modern methods in topological vector spaces, McGraw-Hill International Book Co., New York, 1978. MR 518316
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 112 (1991), 795-802
- MSC: Primary 22E30; Secondary 22E45, 22E46
- DOI: https://doi.org/10.1090/S0002-9939-1991-1045134-0
- MathSciNet review: 1045134