The spectral extension property and extension of multiplicative linear functionals
HTML articles powered by AMS MathViewer
- by Michael J. Meyer
- Proc. Amer. Math. Soc. 112 (1991), 855-861
- DOI: https://doi.org/10.1090/S0002-9939-1991-1052578-X
- PDF | Request permission
Abstract:
Let $\mathcal {A}$ be a commutative Banach algebra. Denote the spectral radius of an element $a$ in $\mathcal {A}$ by ${\rho _\mathcal {A}}(a)$. An extension of $\mathcal {A}$ is a Banach algebra $\mathcal {B}$ such that $\mathcal {A}$ is algebraically, but not necessarily continuously, embedded in $\mathcal {B}$. We view $\mathcal {A}$ as a subalgebra of $\mathcal {B}$. If $\mathcal {B}$ is an extension of $\mathcal {A}$ then $S{p_\mathcal {B}}(a) \cup \{ 0\} \subseteq S{p_\mathcal {A}}(a) \cup \{ 0\}$ and thus ${\rho _\mathcal {B}}(a) \leq {\rho _\mathcal {A}}(a),\forall a \in \mathcal {A}$. Let us say that $\mathcal {A}$ has the spectral extension property if ${\rho _\mathcal {B}}(a) = {\rho _\mathcal {A}}(a)$ for all $a \in \mathcal {A}$ and all extensions $\mathcal {B}$ of $\mathcal {A}$, that $\mathcal {A}$ has the strong spectral extension property if $S{p_\mathcal {B}}(a) \cup \{ 0\} = S{p_\mathcal {A}}(a) \cup \{ 0\}$ for all $a \in \mathcal {A}$ and all extensions $\mathcal {B}$ of $\mathcal {A}$, and that $\mathcal {A}$ has the multiplicative Hahn-Banach property if every multiplicative linear functional $\chi$ on $\mathcal {A}$ has a multiplicative linear extension to every commutative extension $\mathcal {B}$ of $\mathcal {A}$. We give characterizations of these properties for semisimple commutative Banach algebras.References
- Bruce A. Barnes, Interpolation of spectrum of bounded operators on Lebesgue spaces, Proceedings of the Seventh Great Plains Operator Theory Seminar (Lawrence, KS, 1987), 1990, pp. 359–378. MR 1065835, DOI 10.1216/rmjm/1181073112
- Frank F. Bonsall and John Duncan, Complete normed algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 80, Springer-Verlag, New York-Heidelberg, 1973. MR 0423029
- I. M. Gel′fand, D. A. Raĭkov, and G. E. Šilov, Commutative normed rings, Uspehi Matem. Nauk (N.S.) 1 (1946), no. 2(12), 48–146 (Russian). MR 0027130
- Irving Kaplansky, Normed algebras, Duke Math. J. 16 (1949), 399–418. MR 31193
- M. H. A. Newman, Elements of the topology of plane sets of points, Cambridge, at the University Press, 1951. 2nd ed. MR 0044820
- Theodore W. Palmer, Spectral algebras, Rocky Mountain J. Math. 22 (1992), no. 1, 293–328. MR 1159960, DOI 10.1216/rmjm/1181072812
- Charles E. Rickart, General theory of Banach algebras, The University Series in Higher Mathematics, D. Van Nostrand Co., Inc., Princeton, N.J.-Toronto-London-New York, 1960. MR 0115101
- C. E. Rickart, On spectral permanence for certain Banach algebras, Proc. Amer. Math. Soc. 4 (1953), 191–196. MR 52700, DOI 10.1090/S0002-9939-1953-0052700-4
- G. Šilov, On the extension of maximal ideals, C. R. (Doklady) Acad. Sci. URSS (N.S.) 29 (1940), 83–84. MR 0004073
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 112 (1991), 855-861
- MSC: Primary 46J05; Secondary 46H05
- DOI: https://doi.org/10.1090/S0002-9939-1991-1052578-X
- MathSciNet review: 1052578