On the existence of weakly $n$-dimensional spaces
HTML articles powered by AMS MathViewer
- by Jan van Mill and Roman Pol
- Proc. Amer. Math. Soc. 113 (1991), 581-585
- DOI: https://doi.org/10.1090/S0002-9939-1991-1056687-0
- PDF | Request permission
Abstract:
Using a certain method for constructing peculiar large-dimensional spaces in every compactum with sufficiently large dimension, we present for every $n$ an easy example of a weakly $n$-dimensional space.References
- Ryszard Engelking, Teoria wymiaru, Biblioteka Matematyczna, Tom 51. [Mathematics Library, Vol. 51], Państwowe Wydawnictwo Naukowe, Warsaw, 1977 (Polish). MR 0482696
- A. V. Ivanov, An example concerning Mazurkiewicz’ theorem, Seminar on General Topology, Moskov. Gos. Univ., Moscow, 1981, pp. 49–51 (Russian). MR 656948
- Bronisław Knaster, Sur les coupures biconnexes des espaces euclidiens de dimension $n>1$ arbitraire, Rec. Math. [Mat. Sbornik] N.S. 19(61) (1946), 9–18 (Russian, with French summary). MR 0017520
- J. Krasinkiewicz, Essential mappings onto products of manifolds, Geometric and algebraic topology, Banach Center Publ., vol. 18, PWN, Warsaw, 1986, pp. 377–406. MR 925878
- J. Krasinkiewicz, Homotopy separators and mappings into cubes, Fund. Math. 131 (1988), no. 2, 149–154. MR 974664, DOI 10.4064/fm-131-2-149-154
- John Kulesza, The dimension of products of complete separable metric spaces, Fund. Math. 135 (1990), no. 1, 49–54. MR 1074648, DOI 10.4064/fm-135-1-49-54 K. Kuratowski, Topology II, Academic Press, New York, 1968.
- A. Lelek, Dimension inequalities for unions and mappings of separable metric spaces, Colloq. Math. 23 (1971), 69–91. MR 322829, DOI 10.4064/cm-23-1-69-91 S. Mazurkiewicz, Sur les problèmes $\kappa$ et $\lambda$ de Urysohn, Fund. Math. 10 (1927), 311-319. —, Sur les ensembles de dimension faible, Fund. Math. 13 (1929), 210-217.
- J. van Mill, Infinite-dimensional topology, North-Holland Mathematical Library, vol. 43, North-Holland Publishing Co., Amsterdam, 1989. Prerequisites and introduction. MR 977744
- Jun-iti Nagata, Modern dimension theory, Revised edition, Sigma Series in Pure Mathematics, vol. 2, Heldermann Verlag, Berlin, 1983. MR 715431
- Roman Pol, Countable-dimensional universal sets, Trans. Amer. Math. Soc. 297 (1986), no. 1, 255–268. MR 849478, DOI 10.1090/S0002-9947-1986-0849478-7
- Leonard R. Rubin, R. M. Schori, and John J. Walsh, New dimension-theory techniques for constructing infinite-dimensional examples, General Topology Appl. 10 (1979), no. 1, 93–102. MR 519716, DOI 10.1016/0016-660x(79)90031-x W. Serpiński, Sur les ensembles connexes et non connexes, Fund. Math. 2 (1921), 81-95.
- B. Tomaszewski, On weakly $n$-dimensional spaces, Fund. Math. 103 (1979), no. 1, 1–8. MR 535830, DOI 10.4064/fm-103-1-1-8
- A. V. Zarelua, Hereditarily infinite-dimensional spaces, Theory of sets and topology (in honour of Felix Hausdorff, 1868–1942), VEB Deutsch. Verlag Wissensch., Berlin, 1972, pp. 509–525 (Russian). MR 0343252
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 113 (1991), 581-585
- MSC: Primary 54F45; Secondary 54D45
- DOI: https://doi.org/10.1090/S0002-9939-1991-1056687-0
- MathSciNet review: 1056687