Determinant expression of Selberg zeta functions. III
HTML articles powered by AMS MathViewer
- by Shin-ya Koyama
- Proc. Amer. Math. Soc. 113 (1991), 303-311
- DOI: https://doi.org/10.1090/S0002-9939-1991-1062391-5
- PDF | Request permission
Abstract:
We will prove that for $\operatorname {PSL(2},{\mathbf {R}})$ and its cofinite subgroup, the Selberg zeta function is expressed by the determinant of the Laplacian. We will also give an explicit calculation in case of congruence subgroups, and deduce that the part of the determinant of the Laplacian composed of the continuous spectrum is expressed by Dirichlet $L$-functions.References
- E. W. Barnes, The genesis of the double gamma functions, Proc. London Math. Soc. 31 (1899), 358-381.
—, The theory of the $G$-function, Quart. J. Math. 31 (1900), 264-314.
- Eric D’Hoker and D. H. Phong, Multiloop amplitudes for the bosonic Polyakov string, Nuclear Phys. B 269 (1986), no. 1, 205–234. MR 838673, DOI 10.1016/0550-3213(86)90372-X
- Eric D’Hoker and D. H. Phong, On determinants of Laplacians on Riemann surfaces, Comm. Math. Phys. 104 (1986), no. 4, 537–545. MR 841668, DOI 10.1007/BF01211063
- Isaac Efrat, Determinants of Laplacians on surfaces of finite volume, Comm. Math. Phys. 119 (1988), no. 3, 443–451. MR 969211, DOI 10.1007/BF01218082
- Jürgen Fischer, An approach to the Selberg trace formula via the Selberg zeta-function, Lecture Notes in Mathematics, vol. 1253, Springer-Verlag, Berlin, 1987. MR 892317, DOI 10.1007/BFb0077696
- Gerald Gilbert, String theory path integral: genus two and higher, Nuclear Phys. B 277 (1986), no. 1, 102–124. MR 858665, DOI 10.1016/0550-3213(86)90434-7
- M. N. Huxley, Scattering matrices for congruence subgroups, Modular forms (Durham, 1983) Ellis Horwood Ser. Math. Appl.: Statist. Oper. Res., Horwood, Chichester, 1984, pp. 141–156. MR 803366
- Shin-ya Koyama, The Selberg zeta function and the determinant of the Laplacians, Proc. Japan Acad. Ser. A Math. Sci. 65 (1989), no. 8, 280–283. MR 1030200
- Shin-ya Koyama, Determinant expression of Selberg zeta functions. II, Trans. Amer. Math. Soc. 329 (1992), no. 2, 755–772. MR 1141858, DOI 10.1090/S0002-9947-1992-1141858-0
- Shin-ya Koyama, Determinant expression of Selberg zeta functions. I, Trans. Amer. Math. Soc. 324 (1991), no. 1, 149–168. MR 1041049, DOI 10.1090/S0002-9947-1991-1041049-7
- Nobushige Kurokawa, Parabolic components of zeta functions, Proc. Japan Acad. Ser. A Math. Sci. 64 (1988), no. 1, 21–24. MR 953756
- S. Minakshisundaram and Å. Pleijel, Some properties of the eigenfunctions of the Laplace-operator on Riemannian manifolds, Canad. J. Math. 1 (1949), 242–256. MR 31145, DOI 10.4153/cjm-1949-021-5
- Peter Sarnak, Determinants of Laplacians, Comm. Math. Phys. 110 (1987), no. 1, 113–120. MR 885573, DOI 10.1007/BF01209019
- A. Voros, Spectral functions, special functions and the Selberg zeta function, Comm. Math. Phys. 110 (1987), no. 3, 439–465. MR 891947, DOI 10.1007/BF01212422
- E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR 1424469, DOI 10.1017/CBO9780511608759
Bibliographic Information
- © Copyright 1991 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 113 (1991), 303-311
- MSC: Primary 11F72
- DOI: https://doi.org/10.1090/S0002-9939-1991-1062391-5
- MathSciNet review: 1062391