On the behavior of mappings which do not satisfy Hyers-Ulam stability
HTML articles powered by AMS MathViewer
- by Themistocles M. Rassias and Peter Šemrl
- Proc. Amer. Math. Soc. 114 (1992), 989-993
- DOI: https://doi.org/10.1090/S0002-9939-1992-1059634-1
- PDF | Request permission
Abstract:
We find an example to show when the Hyers-Ulam stability does not occur for approximately linear mappings. We also investigate the behavior of such mappings.References
- Zbigniew Gajda, On stability of additive mappings, Internat. J. Math. Math. Sci. 14 (1991), no. 3, 431–434. MR 1110036, DOI 10.1155/S016117129100056X
- D. H. Hyers, On the stability of the linear functional equation, Proc. Nat. Acad. Sci. U.S.A. 27 (1941), 222–224. MR 4076, DOI 10.1073/pnas.27.4.222
- Themistocles M. Rassias, On the stability of the linear mapping in Banach spaces, Proc. Amer. Math. Soc. 72 (1978), no. 2, 297–300. MR 507327, DOI 10.1090/S0002-9939-1978-0507327-1
- Themistocles M. Rassias, On a modified Hyers-Ulam sequence, J. Math. Anal. Appl. 158 (1991), no. 1, 106–113. MR 1113403, DOI 10.1016/0022-247X(91)90270-A
- S. M. Ulam, A collection of mathematical problems, Interscience Tracts in Pure and Applied Mathematics, no. 8, Interscience Publishers, New York-London, 1960. MR 0120127
- Stanislaw Ulam, Sets, numbers, and universes: selected works, Mathematicians of Our Time, Vol. 9, MIT Press, Cambridge, Mass.-London, 1974. Edited by W. A. Beyer, J. Mycielski and G.-C. Rota. MR 0441664
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 114 (1992), 989-993
- MSC: Primary 47H99; Secondary 47H15
- DOI: https://doi.org/10.1090/S0002-9939-1992-1059634-1
- MathSciNet review: 1059634