## Commutator approximants

HTML articles powered by AMS MathViewer

- by P. J. Maher PDF
- Proc. Amer. Math. Soc.
**115**(1992), 995-1000 Request permission

## Abstract:

This paper deals with minimizing $||B - (AX - XA)|{|_p}$, where $A$ and $B$ are fixed, $B \in {\mathcal {C}_p}$, and $X$ varies such that $AX - XA \in {\mathcal {C}_p}$. (Here, ${\mathcal {C}_p}$ denotes the von Neumann-Schatten class and ${\left \| \right \|_p}$ denotes its norm.) The main result (Theorem 3.2) says that if $A$ is normal and $AB = BA$ then $||B - (AX - XA)|{|_p},1 \leq p < \infty$, is minimized if and for $1 < p < \infty$ only if, $AX - XA = 0$; and that the map $X \to ||B - (AX - XA)||_p^p,1 < p < \infty$, has a critical point at $X = V$ if and only if $AV - VA = 0$.## References

- John G. Aiken, John A. Erdos, and Jerome A. Goldstein,
*Unitary approximation of positive operators*, Illinois J. Math.**24**(1980), no. 1, 61–72. MR**550652** - Joel Anderson,
*On normal derivations*, Proc. Amer. Math. Soc.**38**(1973), 135–140. MR**312313**, DOI 10.1090/S0002-9939-1973-0312313-6
N. Dunford and J. T. Schwartz, - Paul R. Halmos,
*Commutators of operators. II*, Amer. J. Math.**76**(1954), 191–198. MR**59484**, DOI 10.2307/2372409 - P. R. Halmos,
*Positive approximants of operators*, Indiana Univ. Math. J.**21**(1971/72), 951–960. MR**291829**, DOI 10.1512/iumj.1972.21.21076
—, - P. J. Maher,
*Partially isometric approximation of positive operators*, Illinois J. Math.**33**(1989), no. 2, 227–243. MR**987820**
J. R. Ringrose, - Helmut Wielandt,
*Über die Unbeschränktheit der Operatoren der Quantenmechanik*, Math. Ann.**121**(1949), 21 (German). MR**30701**, DOI 10.1007/BF01329611 - Aurel Wintner,
*The unboundedness of quantum-mechanical matrices*, Phys. Rev. (2)**71**(1947), 738–739. MR**20724**

*Linear operators, Part*II, Interscience, New York, 1964.

*A Hilbert space problem book*, 2nd ed., Springer-Verlag, New York, 1974.

*Compact non-self-adjoint operators*, Van Nostrand Rheinhold, London, 1971.

## Additional Information

- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**115**(1992), 995-1000 - MSC: Primary 47B47; Secondary 47A30, 47B10, 47B15
- DOI: https://doi.org/10.1090/S0002-9939-1992-1086335-6
- MathSciNet review: 1086335