## Imbedding of any vector field in a scalar semilinear parabolic equation

HTML articles powered by AMS MathViewer

- by P. Poláčik
- Proc. Amer. Math. Soc.
**115**(1992), 1001-1008 - DOI: https://doi.org/10.1090/S0002-9939-1992-1089411-7
- PDF | Request permission

## Abstract:

The scalar semilinear parabolic equation \[ {u_t} = \Delta u + f(x,u,\nabla u),\quad x \in \Omega ,\quad t > 0,\] on a smooth bounded convex domain $\Omega \subset {\mathbb {R}^N}$ under Neumann boundary condition (2) \[ \quad \frac {{\partial u}}{{\partial [unk]}} = 0\quad {\text {on }}\partial \Omega \] is considered. For any prescribed vector field $H$ on ${\mathbb {R}^N}$, a function $f$ is found such that the flow of (1), (2) has an invariant $N$-dimensional subspace and the vector field generating the flow of (1), (2) on this invariant subspace coincides, in appropriate coordinates, with $H$.## References

- Herbert Amann,
*Existence and regularity for semilinear parabolic evolution equations*, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4)**11**(1984), no. 4, 593–676. MR**808425** - S. B. Angenent,
*The Morse-Smale property for a semilinear parabolic equation*, J. Differential Equations**62**(1986), no. 3, 427–442. MR**837763**, DOI 10.1016/0022-0396(86)90093-8 - Bernold Fiedler and John Mallet-Paret,
*A Poincaré-Bendixson theorem for scalar reaction diffusion equations*, Arch. Rational Mech. Anal.**107**(1989), no. 4, 325–345. MR**1004714**, DOI 10.1007/BF00251553 - Bernold Fiedler and Peter Poláčik,
*Complicated dynamics of scalar reaction diffusion equations with a nonlocal term*, Proc. Roy. Soc. Edinburgh Sect. A**115**(1990), no. 1-2, 167–192. MR**1059652**, DOI 10.1017/S0308210500024641 - David Gilbarg and Neil S. Trudinger,
*Elliptic partial differential equations of second order*, Grundlehren der Mathematischen Wissenschaften, Vol. 224, Springer-Verlag, Berlin-New York, 1977. MR**0473443**, DOI 10.1007/978-3-642-96379-7 - John Guckenheimer and Philip Holmes,
*Nonlinear oscillations, dynamical systems, and bifurcations of vector fields*, Applied Mathematical Sciences, vol. 42, Springer-Verlag, New York, 1983. MR**709768**, DOI 10.1007/978-1-4612-1140-2 - Daniel Henry,
*Geometric theory of semilinear parabolic equations*, Lecture Notes in Mathematics, vol. 840, Springer-Verlag, Berlin-New York, 1981. MR**610244**, DOI 10.1007/BFb0089647
—, - Daniel B. Henry,
*Some infinite-dimensional Morse-Smale systems defined by parabolic partial differential equations*, J. Differential Equations**59**(1985), no. 2, 165–205. MR**804887**, DOI 10.1016/0022-0396(85)90153-6 - Morris W. Hirsch,
*Differential topology*, Graduate Texts in Mathematics, vol. 33, Springer-Verlag, New York, 1994. Corrected reprint of the 1976 original. MR**1336822** - Hiroshi Matano,
*Convergence of solutions of one-dimensional semilinear parabolic equations*, J. Math. Kyoto Univ.**18**(1978), no. 2, 221–227. MR**501842**, DOI 10.1215/kjm/1250522572 - Peter Poláčik,
*Convergence in smooth strongly monotone flows defined by semilinear parabolic equations*, J. Differential Equations**79**(1989), no. 1, 89–110. MR**997611**, DOI 10.1016/0022-0396(89)90115-0 - Peter Poláčik,
*Complicated dynamics in scalar semilinear parabolic equations in higher space dimension*, J. Differential Equations**89**(1991), no. 2, 244–271. MR**1091478**, DOI 10.1016/0022-0396(91)90121-O
L. P. Šilnikov, - T. I. Zelenjak,
*Stabilization of solutions of boundary value problems for a second-order parabolic equation with one space variable*, Differencial′nye Uravnenija**4**(1968), 34–45 (Russian). MR**0223758**

*Perturbation of the boundary value problems for partial differential equations*, Seminaire Brasileiro de Analise, Trabalhos Apresentados Nr. 22, 1985.

*A contribution to the problem of the structure of an extended neighborhood of a structurally stable equilibrium of the saddle-focus type*, Math. USSR-Sb.

**10**(1970), 91-102.

## Bibliographic Information

- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**115**(1992), 1001-1008 - MSC: Primary 35K60
- DOI: https://doi.org/10.1090/S0002-9939-1992-1089411-7
- MathSciNet review: 1089411