Illumination for unions of boxes in $\textbf {R}^ d$
HTML articles powered by AMS MathViewer
- by Marilyn Breen
- Proc. Amer. Math. Soc. 116 (1992), 197-202
- DOI: https://doi.org/10.1090/S0002-9939-1992-1089402-6
- PDF | Request permission
Abstract:
Let $S$ be a finite union of boxes (polytopes whose edges are parallel to the coordinate axes) in ${R^d}$. If every two vertices of $S$ are clearly illumined by some common translate of the box $T$, then there is a translate of $T$ that clearly illumines every point of $S$ . A similar result holds when appropriate boundary points of $S$ are illumined (rather than clearly illumined) by translates of box $T$.References
- A. Bezdek, K. Bezdek, and T. Bistriczky, On illumination in the plane by line segments, Geom. Dedicata (to appear).
- Marilyn Breen, Illumination by translates of convex sets, Geom. Dedicata 42 (1992), no. 2, 215–222. MR 1163714, DOI 10.1007/BF00147550
- Ludwig Danzer and Branko Grünbaum, Intersection properties of boxes in $\textbf {R}^{d}$, Combinatorica 2 (1982), no. 3, 237–246. MR 698651, DOI 10.1007/BF02579232 Ludwig Danzer, Branko Grünbaum, and Victor Klee, Helly’s theorem and its relatives, Convexity, Proc. Sympos. Pure Math., vol. 7, Amer. Math. Soc, Providence, RI, 1962, pp. 101-180. E. Helly, Über mengen konvexer Körper mit gemeinschaftlichen Punkten, Jahresber. Deutsch. Math. Verein. 32 (1923), 175-176.
- V. L. Klee Jr., The critical set of a convex body, Amer. J. Math. 75 (1953), 178–188. MR 52803, DOI 10.2307/2372627
- M. Krasnosselsky, Sur un critère pour qu’un domaine soit étoilé, Rec. Math. [Mat. Sbornik] N.S. 19(61) (1946), 309–310 (Russian, with French summary). MR 0020248
- Steven R. Lay, Convex sets and their applications, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1982. MR 655598
- W. Lenhart, R. Pollack, J. Sack, R. Seidel, M. Sharir, S. Suri, G. Toussaint, S. Whitesides, and C. Yap, Computing the link center of a simple polygon, Discrete Comput. Geom. 3 (1988), no. 3, 281–293. Third ACM Symposium on Computational Geometry (Waterloo, Ont., 1987). MR 937288, DOI 10.1007/BF02187913
- Joseph O’Rourke, Art gallery theorems and algorithms, International Series of Monographs on Computer Science, The Clarendon Press, Oxford University Press, New York, 1987. MR 921437 Godfried Toussaint and Hossam El-Gindy, Traditional galleries are star-shaped if every two paintings are visible from some common point, Technical Report SOCS-81.10, McGill Univ., March 1981.
- Frederick A. Valentine, Convex sets, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Toronto-London, 1964. MR 0170264
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 116 (1992), 197-202
- MSC: Primary 52A30
- DOI: https://doi.org/10.1090/S0002-9939-1992-1089402-6
- MathSciNet review: 1089402