## Illumination for unions of boxes in $\textbf {R}^ d$

HTML articles powered by AMS MathViewer

- by Marilyn Breen
- Proc. Amer. Math. Soc.
**116**(1992), 197-202 - DOI: https://doi.org/10.1090/S0002-9939-1992-1089402-6
- PDF | Request permission

## Abstract:

Let $S$ be a finite union of boxes (polytopes whose edges are parallel to the coordinate axes) in ${R^d}$. If every two vertices of $S$ are clearly illumined by some common translate of the box $T$, then there is a translate of $T$ that clearly illumines every point of $S$ . A similar result holds when appropriate boundary points of $S$ are illumined (rather than clearly illumined) by translates of box $T$.## References

- A. Bezdek, K. Bezdek, and T. Bistriczky,
- Marilyn Breen,
*Illumination by translates of convex sets*, Geom. Dedicata**42**(1992), no. 2, 215–222. MR**1163714**, DOI 10.1007/BF00147550 - Ludwig Danzer and Branko Grünbaum,
*Intersection properties of boxes in $\textbf {R}^{d}$*, Combinatorica**2**(1982), no. 3, 237–246. MR**698651**, DOI 10.1007/BF02579232
Ludwig Danzer, Branko Grünbaum, and Victor Klee, - V. L. Klee Jr.,
*The critical set of a convex body*, Amer. J. Math.**75**(1953), 178–188. MR**52803**, DOI 10.2307/2372627 - M. Krasnosselsky,
*Sur un critère pour qu’un domaine soit étoilé*, Rec. Math. [Mat. Sbornik] N.S.**19(61)**(1946), 309–310 (Russian, with French summary). MR**0020248** - Steven R. Lay,
*Convex sets and their applications*, Pure and Applied Mathematics, John Wiley & Sons, Inc., New York, 1982. MR**655598** - W. Lenhart, R. Pollack, J. Sack, R. Seidel, M. Sharir, S. Suri, G. Toussaint, S. Whitesides, and C. Yap,
*Computing the link center of a simple polygon*, Discrete Comput. Geom.**3**(1988), no. 3, 281–293. Third ACM Symposium on Computational Geometry (Waterloo, Ont., 1987). MR**937288**, DOI 10.1007/BF02187913 - Joseph O’Rourke,
*Art gallery theorems and algorithms*, International Series of Monographs on Computer Science, The Clarendon Press, Oxford University Press, New York, 1987. MR**921437**
Godfried Toussaint and Hossam El-Gindy, - Frederick A. Valentine,
*Convex sets*, McGraw-Hill Series in Higher Mathematics, McGraw-Hill Book Co., New York-Toronto-London, 1964. MR**0170264**

*On illumination in the plane by line segments*, Geom. Dedicata (to appear).

*Helly’s theorem and its relatives*, Convexity, Proc. Sympos. Pure Math., vol. 7, Amer. Math. Soc, Providence, RI, 1962, pp. 101-180. E. Helly,

*Über mengen konvexer Körper mit gemeinschaftlichen Punkten*, Jahresber. Deutsch. Math. Verein.

**32**(1923), 175-176.

*Traditional galleries are star-shaped if every two paintings are visible from some common point*, Technical Report SOCS-81.10, McGill Univ., March 1981.

## Bibliographic Information

- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**116**(1992), 197-202 - MSC: Primary 52A30
- DOI: https://doi.org/10.1090/S0002-9939-1992-1089402-6
- MathSciNet review: 1089402