Characterization of lower semicontinuous convex functions
HTML articles powered by AMS MathViewer
- by R. Correa, A. Jofré and L. Thibault
- Proc. Amer. Math. Soc. 116 (1992), 67-72
- DOI: https://doi.org/10.1090/S0002-9939-1992-1126193-4
- PDF | Request permission
Abstract:
We prove that a lower semicontinuous function defined on a reflexive Banach space is convex if and only if its Clarke subdifferential is monotone.References
- H. Attouch, Variational convergence for functions and operators, Applicable Mathematics Series, Pitman (Advanced Publishing Program), Boston, MA, 1984. MR 773850
- J. M. Borwein and J. R. Giles, The proximal normal formula in Banach space, Trans. Amer. Math. Soc. 302 (1987), no. 1, 371–381 (English, with French summary). MR 887515, DOI 10.1090/S0002-9947-1987-0887515-5
- J. M. Borwein and H. M. Strójwas, Proximal analysis and boundaries of closed sets in Banach space. II. Applications, Canad. J. Math. 39 (1987), no. 2, 428–472. MR 899844, DOI 10.4153/CJM-1987-019-4
- Frank H. Clarke, Optimization and nonsmooth analysis, Canadian Mathematical Society Series of Monographs and Advanced Texts, John Wiley & Sons, Inc., New York, 1983. A Wiley-Interscience Publication. MR 709590
- Joseph Diestel, Geometry of Banach spaces—selected topics, Lecture Notes in Mathematics, Vol. 485, Springer-Verlag, Berlin-New York, 1975. MR 0461094
- L. McLinden, An application of Ekeland’s theorem to minimax problems, Nonlinear Anal. 6 (1982), no. 2, 189–196. MR 651700, DOI 10.1016/0362-546X(82)90087-6 J. J. Moreau, Fonctionelles convexes, Lecture Notes, Séminaire Equations aux dérivées partielles, Collège de France, 1966.
- René A. Poliquin, Subgradient monotonicity and convex functions, Nonlinear Anal. 14 (1990), no. 4, 305–317. MR 1040008, DOI 10.1016/0362-546X(90)90167-F
- R. Tyrrell Rockafellar, Convex analysis, Princeton Mathematical Series, No. 28, Princeton University Press, Princeton, N.J., 1970. MR 0274683
- R. T. Rockafellar, Generalized directional derivatives and subgradients of nonconvex functions, Canadian J. Math. 32 (1980), no. 2, 257–280. MR 571922, DOI 10.4153/CJM-1980-020-7
- Dariusz Zagrodny, Approximate mean value theorem for upper subderivatives, Nonlinear Anal. 12 (1988), no. 12, 1413–1428. MR 972409, DOI 10.1016/0362-546X(88)90088-0
Bibliographic Information
- © Copyright 1992 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 116 (1992), 67-72
- MSC: Primary 49J52; Secondary 26B25, 47N10
- DOI: https://doi.org/10.1090/S0002-9939-1992-1126193-4
- MathSciNet review: 1126193