Skip to Main Content

Proceedings of the American Mathematical Society

Published by the American Mathematical Society since 1950, Proceedings of the American Mathematical Society is devoted to shorter research articles in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

 

Upper bound of $\sum 1/(a_ i\log a_ i)$ for primitive sequences
HTML articles powered by AMS MathViewer

by Paul Erdős and Zhen Xiang Zhang PDF
Proc. Amer. Math. Soc. 117 (1993), 891-895 Request permission

Abstract:

A sequence $A = \{ {a_i}\}$ of positive integers ${a_1} < {a_2} < \cdots$ is said to be primitive if no term of $A$ divides any other. The senior author conjectures that, for any primitive sequence $A$, \[ \sum \limits _{a \leqslant n,a \in A} {\frac {1} {{a \log a}}} \leqslant \sum \limits _{p \leqslant n} {\frac {1} {{p \log p}}} \quad {\text {for}}\;n > 1,\] where $p$ is a variable prime. In our two previous papers we partially proved this conjecture. The main result of this paper is: for any primitive sequence $A$, \[ \sum \limits _{a \in A} {\frac {1} {{a \log a}} < 1.84.} \] We also give a necessary and sufficient condition for this conjecture, i.e., \[ \sum \limits _{b \in B} {\frac {1} {{b \log b}} \leqslant \sum {\frac {1} {{p \log p}}} } \] for any primitive sequence $B$.
References
    P. Erdös, Note on sequences of integers no one of which is divisible by any other, J. London Math. Soc. (2) 10 (1935), 126-128. —, Seminar at the University of Limoges, 1988. P. Erdös, A. Sarközi, and E. Szemerédi, On divisibility properties of sequences of integers, Colloq. Math. Soc. Janos Bolyai, vol. 2, Debrecen, Hungary, 1968.
  • H. Halberstam and K. F. Roth, Sequences. Vol. I, Clarendon Press, Oxford, 1966. MR 0210679
  • Guy Robin, Estimation de la fonction de Tchebychef $\theta$ sur le $k$-ième nombre premier et grandes valeurs de la fonction $\omega (n)$ nombre de diviseurs premiers de $n$, Acta Arith. 42 (1983), no. 4, 367–389 (French). MR 736719, DOI 10.4064/aa-42-4-367-389
  • J. Barkley Rosser and Lowell Schoenfeld, Approximate formulas for some functions of prime numbers, Illinois J. Math. 6 (1962), 64–94. MR 137689
  • Zhen Xiang Zhang, On a conjecture of Erdős on the sum $\sum _{p\leq n}1/(p\log p)$, J. Number Theory 39 (1991), no. 1, 14–17. MR 1123165, DOI 10.1016/0022-314X(91)90030-F
  • —, On a problem of Erdös concerning primitive sequences, submitted.
Similar Articles
  • Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11B05
  • Retrieve articles in all journals with MSC: 11B05
Additional Information
  • © Copyright 1993 American Mathematical Society
  • Journal: Proc. Amer. Math. Soc. 117 (1993), 891-895
  • MSC: Primary 11B05
  • DOI: https://doi.org/10.1090/S0002-9939-1993-1116257-4
  • MathSciNet review: 1116257