Permutation properties of the polynomials over a finite field
Author:
Rex Matthews
Journal:
Proc. Amer. Math. Soc. 120 (1994), 47-51
MSC:
Primary 11T06
DOI:
https://doi.org/10.1090/S0002-9939-1994-1165062-2
MathSciNet review:
1165062
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: It is shown that a polynomial of the shape is a permutation polynomial over a finite field
of odd characteristic
if and only if
.
- [1] David G. Glynn, Two new sequences of ovals in finite Desarguesian planes of even order, Combinatorial mathematics, X (Adelaide, 1982) Lecture Notes in Math., vol. 1036, Springer, Berlin, 1983, pp. 217–229. MR 731584, https://doi.org/10.1007/BFb0071521
- [2] David G. Glynn, A condition for the existence of ovals in 𝑃𝐺(2,𝑞),𝑞 even, Geom. Dedicata 32 (1989), no. 2, 247–252. MR 1029677, https://doi.org/10.1007/BF00147433
- [3] J. W. P. Hirschfeld, Projective geometries over finite fields, The Clarendon Press, Oxford University Press, New York, 1979. Oxford Mathematical Monographs. MR 554919
- [4]
R. Lidl and W. B. Müller, Permutation polynomials in
-cryptosystems, Adv. in Cryptology, Plenum, New York, 1984, pp. 293-301.
- [5] Rudolf Lidl and Gary L. Mullen, Unsolved Problems: When Does a Polynomial Over a Finite Field Permute the Elements of the Field?, Amer. Math. Monthly 95 (1988), no. 3, 243–246. MR 1541277, https://doi.org/10.2307/2323626
- [6] Rudolf Lidl and Harald Niederreiter, Finite fields, 2nd ed., Encyclopedia of Mathematics and its Applications, vol. 20, Cambridge University Press, Cambridge, 1997. With a foreword by P. M. Cohn. MR 1429394
- [7] R. A. Mollin and C. Small, On permutation polynomials over finite fields, Internat. J. Math. Math. Sci. 10 (1987), no. 3, 535–543. MR 896608, https://doi.org/10.1155/S0161171287000644
- [8] Beniamino Segre, Ovals in a finite projective plane, Canadian J. Math. 7 (1955), 414–416. MR 71034, https://doi.org/10.4153/CJM-1955-045-x
- [9] Beniamino Segre, Ovali e curve 𝜎 nei piani di Galois di caratteristica due, Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 32 (1962), 785–790 (Italian). MR 149361
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 11T06
Retrieve articles in all journals with MSC: 11T06
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1994-1165062-2
Article copyright:
© Copyright 1994
American Mathematical Society