Solvability of the equation $\Delta _ gu+\tilde {S}u^ \sigma =Su$ on manifolds
HTML articles powered by AMS MathViewer
- by Jun Jie Tang
- Proc. Amer. Math. Soc. 121 (1994), 83-92
- DOI: https://doi.org/10.1090/S0002-9939-1994-1174496-1
- PDF | Request permission
Abstract:
For the negative Yamabe invariant and $\tilde S \leq 0$, we obtain that the equation ${\Delta _g}u + \tilde S{u^\sigma } = Su$ has a positive solution if and only if the supremum of the Yamabe invariant over all smooth coverings of the 0-level set of $\tilde S$ is positive.References
- Thierry Aubin, Nonlinear analysis on manifolds. Monge-Ampère equations, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 252, Springer-Verlag, New York, 1982. MR 681859, DOI 10.1007/978-1-4612-5734-9
- Patricio Aviles and Robert C. McOwen, Complete conformal metrics with negative scalar curvature in compact Riemannian manifolds, Duke Math. J. 56 (1988), no. 2, 395–398. MR 932852, DOI 10.1215/S0012-7094-88-05616-5
- R. Courant and D. Hilbert, Methods of mathematical physics. Vol. I, Interscience Publishers, Inc., New York, N.Y., 1953. MR 0065391
- Philippe Delanoë, Generalized stereographic projections with prescribed scalar curvature, Geometry and nonlinear partial differential equations (Fayetteville, AR, 1990) Contemp. Math., vol. 127, Amer. Math. Soc., Providence, RI, 1992, pp. 17–25. MR 1155406, DOI 10.1090/conm/127/1155406
- Jerry L. Kazdan and F. W. Warner, Scalar curvature and conformal deformation of Riemannian structure, J. Differential Geometry 10 (1975), 113–134. MR 365409
- Jerry L. Kazdan and F. W. Warner, Curvature functions for compact $2$-manifolds, Ann. of Math. (2) 99 (1974), 14–47. MR 343205, DOI 10.2307/1971012
- Peter Li, On the Sobolev constant and the $p$-spectrum of a compact Riemannian manifold, Ann. Sci. École Norm. Sup. (4) 13 (1980), no. 4, 451–468. MR 608289, DOI 10.24033/asens.1392
- Robert C. McOwen, Singularities and the conformal scalar curvature equation, Geometric analysis and nonlinear partial differential equations (Denton, TX, 1990) Lecture Notes in Pure and Appl. Math., vol. 144, Dekker, New York, 1993, pp. 221–233. MR 1207185
- Tiancheng Ouyang, On the positive solutions of semilinear equations $\Delta u+\lambda u-hu^p=0$ on the compact manifolds, Trans. Amer. Math. Soc. 331 (1992), no. 2, 503–527. MR 1055810, DOI 10.1090/S0002-9947-1992-1055810-7
- Shin Ozawa, Singular variation of domains and eigenvalues of the Laplacian, Duke Math. J. 48 (1981), no. 4, 767–778. MR 782576, DOI 10.1215/S0012-7094-81-04842-0
- Jun Jie Tang, Prescribing curvature on manifolds with nonpositive Yamabe invariant and singularities, Comm. Partial Differential Equations 19 (1994), no. 5-6, 701–718. MR 1274537, DOI 10.1080/03605309408821032
- Neil S. Trudinger, Remarks concerning the conformal deformation of Riemannian structures on compact manifolds, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 22 (1968), 265–274. MR 240748
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 121 (1994), 83-92
- MSC: Primary 53C21; Secondary 35J60, 53C25, 58G30
- DOI: https://doi.org/10.1090/S0002-9939-1994-1174496-1
- MathSciNet review: 1174496