On the behavior of the constant in a decoupling inequality for martingales

Author:
Paweł Hitczenko

Journal:
Proc. Amer. Math. Soc. **121** (1994), 253-258

MSC:
Primary 60G42

DOI:
https://doi.org/10.1090/S0002-9939-1994-1176481-2

MathSciNet review:
1176481

Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: Let $({f_n})$ and $({g_n})$ be two martingales with respect to the same filtration $({\mathcal {F}_n})$ such that their difference sequences $({d_n})$ and $({e_n})$ satisfy \[ P({d_n} \geq \lambda |{\mathcal {F}_{n - 1}}) = P({e_n} \geq \lambda |{\mathcal {F}_{n - 1}})\] for all real $\lambda$’s and $n \geq 1$. It is known that \[ {\left \| {{f^ \ast }} \right \|_p} \leq {K_p}{\left \| {{g^ \ast }} \right \|_p},\quad 1 \leq p < \infty ,\] for some constant ${K_p}$ depending only on *p*. We show that ${K_p} = O(p)$. This will be obtained via a new version of Rosenthal’s inequality which generalizes a result of Pinelis and which may be of independent interest.

- D. L. Burkholder,
*Distribution function inequalities for martingales*, Ann. Probability**1**(1973), 19–42. MR**365692**, DOI https://doi.org/10.1214/aop/1176997023 - Adriano M. Garsia,
*Martingale inequalities: Seminar notes on recent progress*, W. A. Benjamin, Inc., Reading, Mass.-London-Amsterdam, 1973. Mathematics Lecture Notes Series. MR**0448538** - Paweł Hitczenko,
*Comparison of moments for tangent sequences of random variables*, Probab. Theory Related Fields**78**(1988), no. 2, 223–230. MR**945110**, DOI https://doi.org/10.1007/BF00322019 - Paweł Hitczenko,
*Best constant in the decoupling inequality for nonnegative random variables*, Statist. Probab. Lett.**9**(1990), no. 4, 327–329. MR**1047832**, DOI https://doi.org/10.1016/0167-7152%2890%2990141-S - Paweł Hitczenko,
*Best constants in martingale version of Rosenthal’s inequality*, Ann. Probab.**18**(1990), no. 4, 1656–1668. MR**1071816** - S. Kwapień and W. A. Woyczyński,
*Tangent sequences of random variables: basic inequalities and their applications*, Almost everywhere convergence (Columbus, OH, 1988) Academic Press, Boston, MA, 1989, pp. 237–265. MR**1035249** - Shlomo Levental,
*A uniform CLT for uniformly bounded families of martingale differences*, J. Theoret. Probab.**2**(1989), no. 3, 271–287. MR**996990**, DOI https://doi.org/10.1007/BF01054016 - S. V. Nagaev and I. F. Pinelis,
*Some inequalities for the distributions of sums of independent random variables*, Teor. Verojatnost. i Primenen.**22**(1977), no. 2, 254–263 (Russian, with English summary). MR**0443034** - I. F. Pinelis,
*Estimates for moments of infinite-dimensional martingales*, Mat. Zametki**27**(1980), no. 6, 953–958, 990 (Russian). MR**580071** - V. V. Sazonov,
*On the estimation of the moments of sums of independent random variables*, Teor. Verojatnost. i Primenen.**19**(1974), 383–386 (Russian, with English summary). MR**0348839** - Joel Zinn,
*Comparison of martingale difference sequences*, Probability in Banach spaces, V (Medford, Mass., 1984) Lecture Notes in Math., vol. 1153, Springer, Berlin, 1985, pp. 453–457. MR**821997**, DOI https://doi.org/10.1007/BFb0074966

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC:
60G42

Retrieve articles in all journals with MSC: 60G42

Additional Information

Keywords:
Moment inequalities,
martingale,
tangent sequences

Article copyright:
© Copyright 1994
American Mathematical Society