Homology of Azumaya algebras
HTML articles powered by AMS MathViewer
- by G. Cortiñas and C. Weibel
- Proc. Amer. Math. Soc. 121 (1994), 53-55
- DOI: https://doi.org/10.1090/S0002-9939-1994-1181159-5
- PDF | Request permission
Abstract:
If R is a commutative k-algebra, any Azumaya R-algebra has the same Hochschild homology as R does.References
- Nicolas Bourbaki, Elements of mathematics. Commutative algebra, Hermann, Paris; Addison-Wesley Publishing Co., Reading, Mass., 1972. Translated from the French. MR 0360549 A. Grothendieck, Le groupe de Brauer. I, Dix Exposés sur la Cohomologie des Schemas, North-Holland, Amsterdam, 1966.
- Charles A. Weibel and Susan C. Geller, Étale descent for Hochschild and cyclic homology, Comment. Math. Helv. 66 (1991), no. 3, 368–388. MR 1120653, DOI 10.1007/BF02566656
- Michael Larsen, Homology of maximal orders in central simple algebras, Comment. Math. Helv. 67 (1992), no. 4, 613–634. MR 1185811, DOI 10.1007/BF02566521
- Samuel D. Schack, Bimodules, the Brauer group, Morita equivalence, and cohomology, J. Pure Appl. Algebra 80 (1992), no. 3, 315–325. MR 1170717, DOI 10.1016/0022-4049(92)90149-A
Bibliographic Information
- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 121 (1994), 53-55
- MSC: Primary 16E40; Secondary 18G60
- DOI: https://doi.org/10.1090/S0002-9939-1994-1181159-5
- MathSciNet review: 1181159