## A geometric approach to the multivariate Müntz problem

HTML articles powered by AMS MathViewer

- by András Kroó PDF
- Proc. Amer. Math. Soc.
**121**(1994), 199-208 Request permission

## Abstract:

For a countable set $\Omega \subset {\mathbb {R}^n}$ denote by $P(\Omega )$ the space of polynomials spanned by ${x^\omega }, \omega \in \Omega (x = ({x_1}, \ldots ,{x_n}) \in {\mathbb {R}^n}, \omega = ({\omega _1}, \ldots ,{\omega _n}) \in \Omega , {x^\omega } = \prod _{i = 1}^nx_i^{{\omega _i}})$. In this paper we investigate the question of the density of $P(\Omega )$ in $C(K)$, the space of real valued continuous functions endowed with the supremum norm on compact set $K \subset {\mathbb {R}^n}$. In case $n = 1$ the classical theorem of Müntz gives an elegant necessary and sufficient condition for density. This problem (closely related to the distribution of zeros of Fourier transforms) is much more complex in the multivariate setting. We shall present an extension of Müntz’ condition to the case $n > 1$ which will suffice for density. This, in particular, will enable us to construct "optimally sparse" lattice point sets $\Omega$ for which density holds.## References

- J. A. Clarkson and P. Erdös,
*Approximation by polynomials*, Duke Math. J.**10**(1943), 5–11. MR**7813**, DOI 10.1215/S0012-7094-43-01002-6 - Gerhard Gierz and Boris Shekhtman,
*A duality principle for rational approximation*, Pacific J. Math.**125**(1986), no. 1, 79–92. MR**860751**, DOI 10.2140/pjm.1986.125.79 - M. von Golitschek,
*Generalization of the Jackson approximation theorems in the sense of Ch. Müntz*, Bull. Amer. Math. Soc.**75**(1969), 524–528. MR**239335**, DOI 10.1090/S0002-9904-1969-12230-5 - Simon Hellerstein,
*Some analytic varieties in the polydisc and the Müntz-Szasz problem in several variables*, Trans. Amer. Math. Soc.**158**(1971), 285–292. MR**285724**, DOI 10.1090/S0002-9947-1971-0285724-8 - J. Korevaar,
*Müntz-type theorems for arcs and for $\textbf {R}^{n}$*, Second Edmonton conference on approximation theory (Edmonton, Alta., 1982) CMS Conf. Proc., vol. 3, Amer. Math. Soc., Providence, RI, 1983, pp. 199–225. MR**729331** - Jacob Korevaar and Simon Hellerstein,
*Discrete sets of uniqueness for bounded holomorphic functions $f(z,\,w)$*, Entire Functions and Related Parts of Analysis (Proc. Sympos. Pure Math., La Jolla, Calif., 1966) Amer. Math. Soc., Providence, R.I., 1968, pp. 273–284. MR**0235150** - W. A. J. Luxemburg and J. Korevaar,
*Entire functions and Müntz-Szász type approximation*, Trans. Amer. Math. Soc.**157**(1971), 23–37. MR**281929**, DOI 10.1090/S0002-9947-1971-0281929-0 - D. Leviatan,
*On the Jackson-Müntz theorem*, J. Approximation Theory**10**(1974), 1–5. MR**425428**, DOI 10.1016/0021-9045(74)90091-4 - D. J. Newman,
*A Müntz-Jackson theorem*, Amer. J. Math.**87**(1965), 940–944. MR**186974**, DOI 10.2307/2373254 - L. I. Ronkin,
*Certain questions of completeness and uniqueness for functions of several variables*, Funkcional. Anal. i Priložen.**7**(1973), no. 1, 45–55 (Russian). MR**0316738** - Laurent Schwartz,
*Étude des sommes d’exponentielles réelles*, Actualités Scientifiques et Industrielles [Current Scientific and Industrial Topics], No. 959, Hermann & Cie, Paris, 1943 (French). MR**0014502** - G. Somorjai,
*A Müntz-type problem for rational approximation*, Acta Math. Acad. Sci. Hungar.**27**(1976), no. 1-2, 197–199. MR**430617**, DOI 10.1007/BF01896775 - Elias M. Stein and Guido Weiss,
*Introduction to Fourier analysis on Euclidean spaces*, Princeton Mathematical Series, No. 32, Princeton University Press, Princeton, N.J., 1971. MR**0304972**

## Additional Information

- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**121**(1994), 199-208 - MSC: Primary 41A30; Secondary 41A63
- DOI: https://doi.org/10.1090/S0002-9939-1994-1181170-4
- MathSciNet review: 1181170