## Degeneration of pseudo-Laplace operators for hyperbolic Riemann surfaces

HTML articles powered by AMS MathViewer

- by Lizhen Ji PDF
- Proc. Amer. Math. Soc.
**121**(1994), 283-293 Request permission

## Abstract:

For finite volume, noncompact Riemann surfaces with their canonical hyperbolic metrics, there is a notion of pseudo-Laplace operators which include all embedded eigenvalues $(> \frac {1}{4})$ of the Laplacian as a part of their eigenvalues. Similarly, we define pseudo-Laplace operators for compact hyperbolic Riemann surfaces with short geodesics. Then, for any degenerating family of hyperbolic Riemann surfaces ${S_l} (l \geq 0)$, we show that normalized pseudoeigenfunctions and pseudoeigenvalues of ${S_l}$ converge to normalized pseudoeigenfunctions and pseudoeigenvalues of ${S_0}$ as $l \to 0$. In particular, normalized embedded eigenfunctions and their embedded eigenvalues of ${S_0}$ can be approximated by normalized pseudoeigenfunctions and pseudoeigenvalues of ${S_l}$ and $l \to 0$.## References

- Robert A. Adams,
*Sobolev spaces*, Pure and Applied Mathematics, Vol. 65, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR**0450957** - Isaac Chavel,
*Eigenvalues in Riemannian geometry*, Pure and Applied Mathematics, vol. 115, Academic Press, Inc., Orlando, FL, 1984. Including a chapter by Burton Randol; With an appendix by Jozef Dodziuk. MR**768584** - Yves Colin de Verdière,
*Pseudo-laplaciens. I*, Ann. Inst. Fourier (Grenoble)**32**(1982), no. 3, xiii, 275–286 (French, with English summary). MR**688031** - Yves Colin de Verdière,
*Pseudo-laplaciens. II*, Ann. Inst. Fourier (Grenoble)**33**(1983), no. 2, 87–113 (French). MR**699488** - J.-M. Deshouillers, H. Iwaniec, R. S. Phillips, and P. Sarnak,
*Maass cusp forms*, Proc. Nat. Acad. Sci. U.S.A.**82**(1985), no. 11, 3533–3534. MR**791741**, DOI 10.1073/pnas.82.11.3533 - David Gilbarg and Neil S. Trudinger,
*Elliptic partial differential equations of second order*, Grundlehren der Mathematischen Wissenschaften, Vol. 224, Springer-Verlag, Berlin-New York, 1977. MR**0473443** - Dennis A. Hejhal,
*Regular $b$-groups, degenerating Riemann surfaces, and spectral theory*, Mem. Amer. Math. Soc.**88**(1990), no. 437, iv+138. MR**1052555**, DOI 10.1090/memo/0437 - Lizhen Ji,
*Spectral degeneration of hyperbolic Riemann surfaces*, J. Differential Geom.**38**(1993), no. 2, 263–313. MR**1237486** - Peter D. Lax and Ralph S. Phillips,
*Scattering theory for automorphic functions*, Annals of Mathematics Studies, No. 87, Princeton University Press, Princeton, N.J., 1976. MR**0562288** - R. S. Phillips and P. Sarnak,
*On cusp forms for co-finite subgroups of $\textrm {PSL}(2,\textbf {R})$*, Invent. Math.**80**(1985), no. 2, 339–364. MR**788414**, DOI 10.1007/BF01388610 - Peter Sarnak,
*On cusp forms*, The Selberg trace formula and related topics (Brunswick, Maine, 1984) Contemp. Math., vol. 53, Amer. Math. Soc., Providence, RI, 1986, pp. 393–407. MR**853570**, DOI 10.1090/conm/053/853570
A. Selberg, - Michael Wolf,
*Infinite energy harmonic maps and degeneration of hyperbolic surfaces in moduli space*, J. Differential Geom.**33**(1991), no. 2, 487–539. MR**1094467** - Scott A. Wolpert,
*Asymptotics of the spectrum and the Selberg zeta function on the space of Riemann surfaces*, Comm. Math. Phys.**112**(1987), no. 2, 283–315. MR**905169**
—, - Scott A. Wolpert,
*Spectral limits for hyperbolic surfaces. I, II*, Invent. Math.**108**(1992), no. 1, 67–89, 91–129. MR**1156387**, DOI 10.1007/BF02100600
—, - Scott A. Wolpert,
*Disappearance of cusp forms in special families*, Ann. of Math. (2)**139**(1994), no. 2, 239–291. MR**1274093**, DOI 10.2307/2946582

*Harmonic analysis*(

*Göttingen Lecture notes*), Atle Selberg’s Collected Papers, Springer-Verlag, Berlin and New York, 1989, pp. 626-674.

*The spectrum of a Riemann surface with a cusp*, Taniguchi Symposium Lecture, November 1989, preprint.

*Spectral limits for hyperbolic surfaces*. II, Invent. Math.

**108**(1992), 91-129.

## Additional Information

- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**121**(1994), 283-293 - MSC: Primary 58G25
- DOI: https://doi.org/10.1090/S0002-9939-1994-1184082-5
- MathSciNet review: 1184082