## A forbidden set for embedded eigenvalues

HTML articles powered by AMS MathViewer

- by Rafael René del Río Castillo PDF
- Proc. Amer. Math. Soc.
**121**(1994), 77-82 Request permission

## Abstract:

We study the problem of embedding eigenvalues to the spectrum of a Sturm-Liouville operator in the half axis when this spectrum is a perfect set. We prove the existence of an uncountable dense subset of the spectrum for which, by modifying the condition at the left or by locally perturbing the potential, it is not possible to add any eigenvalues.## References

- N. Aronszajn,
*On a problem of Weyl in the theory of singular Sturm-Liouville equations*, Amer. J. Math.**79**(1957), 597–610. MR**88623**, DOI 10.2307/2372564 - Rafael R. del Río Castillo,
*Embedded eigenvalues of Sturm-Liouville operators*, Comm. Math. Phys.**142**(1991), no. 2, 421–431. MR**1137069**, DOI 10.1007/BF02102068 - William F. Donoghue Jr.,
*On the perturbation of spectra*, Comm. Pure Appl. Math.**18**(1965), 559–579. MR**190761**, DOI 10.1002/cpa.3160180402 - Michael S. P. Eastham and Hubert Kalf,
*Schrödinger-type operators with continuous spectra*, Research Notes in Mathematics, vol. 65, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1982. MR**667015** - N. K. Kundu,
*On some properties of symmetric derivatives*, Ann. Polon. Math.**30**(1974), 9–18. MR**346102**, DOI 10.4064/ap-30-1-9-18 - Joachim Weidmann,
*Spectral theory of ordinary differential operators*, Lecture Notes in Mathematics, vol. 1258, Springer-Verlag, Berlin, 1987. MR**923320**, DOI 10.1007/BFb0077960

## Additional Information

- © Copyright 1994 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**121**(1994), 77-82 - MSC: Primary 34L99; Secondary 34B20, 34B24, 47E05
- DOI: https://doi.org/10.1090/S0002-9939-1994-1191867-8
- MathSciNet review: 1191867