# Proceedings of the American Mathematical Society

Published by the American Mathematical Society, the Proceedings of the American Mathematical Society (PROC) is devoted to research articles of the highest quality in all areas of pure and applied mathematics.

ISSN 1088-6826 (online) ISSN 0002-9939 (print)

The 2020 MCQ for Proceedings of the American Mathematical Society is 0.85.

What is MCQ? The Mathematical Citation Quotient (MCQ) measures journal impact by looking at citations over a five-year period. Subscribers to MathSciNet may click through for more detailed information.

## On the medians of gamma distributions and an equation of RamanujanHTML articles powered by AMS MathViewer

by K. P. Choi
Proc. Amer. Math. Soc. 121 (1994), 245-251 Request permission

## Abstract:

For $n \geq 0$, let $\lambda (n)$ denote the median of the $\Gamma (n + 1,1)$ distribution. We prove that $n + \tfrac {2}{3} < \lambda (n) \leq \min (n + \log 2, n + \tfrac {2}{3} + {(2n + 2)^{ - 1}})$. These bounds are sharp. There is an intimate relationship between $\lambda (n)$ and an equation of Ramanujan. Based on this relationship, we derive the asymptotic expansion of $\lambda (n)$ as follows: $\lambda (n) = n + \frac {2}{3} + \frac {8}{{405n}} - \frac {{64}}{{5103{n^2}}} + \frac {{{2^7} \cdot 23}}{{{3^9} \cdot {5^2}{n^3}}} + \cdots .$ Let median $({Z_\mu })$ denote the median of a Poisson random variable with mean $\mu$, where the median is defined to be the least integer m such that $P({Z_\mu } \leq m) \geq \tfrac {1}{2}$. We show that the bounds on $\lambda (n)$ imply $\mu - \log 2 \leq {\text {median}}({Z_\mu }) < \mu + \frac {1}{3}.$ This proves a conjecture of Chen and Rubin. These inequalities are sharp.
Similar Articles
• Retrieve articles in Proceedings of the American Mathematical Society with MSC: 62E15, 33B15, 41A58
• Retrieve articles in all journals with MSC: 62E15, 33B15, 41A58