On lifting the hyperelliptic involution
Author:
Robert D. M. Accola
Journal:
Proc. Amer. Math. Soc. 122 (1994), 341-347
MSC:
Primary 14H30; Secondary 14H45, 30F99
DOI:
https://doi.org/10.1090/S0002-9939-1994-1197530-1
MathSciNet review:
1197530
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: Let stand for a compact Riemann surface of genus p.
(1) Let be hyperelliptic, and let n be a positive integer. Then there exists an unramified covering of n sheets,
, where
is hyperelliptic.
(2) Let be an unramified Galois covering with a dihedral group as Galois group, and let n be odd. Then
is elliptic hyperelliptic (bi-elliptic).
(3) Let be an unramified non-Galois covering of three sheets. Then
is hyperelliptic.
- [1] Robert D. M. Accola, Riemann surfaces with automorphism groups admitting partitions, Proc. Amer. Math. Soc. 21 (1969), 477–482. MR 237764, https://doi.org/10.1090/S0002-9939-1969-0237764-9
- [2] F. Enriques, Sopra le superficie che posseggono un fascio ellittice o di genese due di curve razionli, Roma Reale Acad. Lincei, Rendiconti (5) 7 (1898), 281-286.
- [3] H. M. Farkas, Automorphisms of compact Riemann surfaces and the vanishing of theta constants, Bull. Amer. Math. Soc. 73 (1967), 231–232. MR 213547, https://doi.org/10.1090/S0002-9904-1967-11694-X
- [4] H. M. Farkas, Unramified double coverings of hyperelliptic surfaces, J. Analyse Math. 30 (1976), 150–155. MR 437741, https://doi.org/10.1007/BF02786710
- [5] H. M. Farkas, Unramified coverings of hyperelliptic Riemann surfaces, Complex analysis, I (College Park, Md., 1985–86) Lecture Notes in Math., vol. 1275, Springer, Berlin, 1987, pp. 113–130. MR 922295, https://doi.org/10.1007/BFb0078347
- [6] Ryutaro Horiuchi, Normal coverings of hyperelliptic Riemann surfaces, J. Math. Kyoto Univ. 19 (1979), no. 3, 497–523. MR 553229, https://doi.org/10.1215/kjm/1250522375
- [7] C. Maclachlan, Smooth coverings of hyperelliptic surfaces, Quart. J. Math. Oxford Ser. (2) 22 (1971), 117–123. MR 283194, https://doi.org/10.1093/qmath/22.1.117
Retrieve articles in Proceedings of the American Mathematical Society with MSC: 14H30, 14H45, 30F99
Retrieve articles in all journals with MSC: 14H30, 14H45, 30F99
Additional Information
DOI:
https://doi.org/10.1090/S0002-9939-1994-1197530-1
Article copyright:
© Copyright 1994
American Mathematical Society