Continuity of random derivations
HTML articles powered by AMS MathViewer
- by M. V. Velasco and A. R. Villena
- Proc. Amer. Math. Soc. 123 (1995), 107-120
- DOI: https://doi.org/10.1090/S0002-9939-1995-1217455-3
- PDF | Request permission
Abstract:
In this paper we extend the well-known Johnson-Sinclair theorem in a stochastic sense showing that stochastically derivative linear random operators on semisimple Banach algebras are stochastically continuous. Besides, we prove that probably derivative linear random operators on semisimple Banach algebras are probably continuous.References
- A. Adrian Albert, Structure of algebras, American Mathematical Society Colloquium Publications, Vol. XXIV, American Mathematical Society, Providence, R.I., 1961. Revised printing. MR 0123587
- W. G. Bade and P. C. Curtis Jr., Prime ideals and automatic continuity problems for Banach algebras, J. Functional Analysis 29 (1978), no. 1, 88–103. MR 499936, DOI 10.1016/0022-1236(78)90048-4
- W. G. Bade and P. C. Curtis Jr., The continuity of derivations of Banach algebras, J. Functional Analysis 16 (1974), 372–387. MR 0358354, DOI 10.1016/0022-1236(74)90056-1
- W. G. Bade and H. G. Dales, Continuity of derivations from radical convolution algebras, Studia Math. 95 (1989), no. 1, 59–91. MR 1024275, DOI 10.4064/sm-95-1-59-91
- Frank F. Bonsall and John Duncan, Complete normed algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 80, Springer-Verlag, New York-Heidelberg, 1973. MR 0423029, DOI 10.1007/978-3-642-65669-9
- M. Brešar, Jordan derivations on semiprime rings, Proc. Amer. Math. Soc. 104 (1988), no. 4, 1003–1006. MR 929422, DOI 10.1090/S0002-9939-1988-0929422-1
- J. M. Cusack, Jordan derivations on rings, Proc. Amer. Math. Soc. 53 (1975), no. 2, 321–324. MR 399182, DOI 10.1090/S0002-9939-1975-0399182-5
- Julian Cusack, Automatic continuity and topologically simple radical Banach algebras, J. London Math. Soc. (2) 16 (1977), no. 3, 493–500. MR 461136, DOI 10.1112/jlms/s2-16.3.493
- Ramesh V. Garimella, Continuity of derivations on some semiprime Banach algebra, Proc. Amer. Math. Soc. 99 (1987), no. 2, 289–292. MR 870787, DOI 10.1090/S0002-9939-1987-0870787-6
- B. E. Johnson, Continuity of derivations on commutative algebras, Amer. J. Math. 91 (1969), 1–10. MR 246127, DOI 10.2307/2373262
- B. E. Johnson and A. M. Sinclair, Continuity of derivations and a problem of Kaplansky, Amer. J. Math. 90 (1968), 1067–1073. MR 239419, DOI 10.2307/2373290 K. Kuratowski, Introducción a la teoría de conjuntos y a la topologia, Traducción de R. Rodriguez Vidal, Vicens-Vives, 1966.
- Michel Ledoux and Michel Talagrand, Probability in Banach spaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 23, Springer-Verlag, Berlin, 1991. Isoperimetry and processes. MR 1102015, DOI 10.1007/978-3-642-20212-4
- B. J. Pettis, On integration in vector spaces, Trans. Amer. Math. Soc. 44 (1938), no. 2, 277–304. MR 1501970, DOI 10.1090/S0002-9947-1938-1501970-8
- J. R. Ringrose, Automatic continuity of derivations of operator algebras, J. London Math. Soc. (2) 5 (1972), 432–438. MR 374927, DOI 10.1112/jlms/s2-5.3.432
- Shôichirô Sakai, On a conjecture of Kaplansky, Tohoku Math. J. (2) 12 (1960), 31–33. MR 112055, DOI 10.2748/tmj/1178244484 M. V. Velasco and A. R. Villena, A random closed graph theorem, submitted.
- Armando R. Villena Muñoz, Continuity of derivations on a complete normed alternative algebra, J. Inst. Math. Comput. Sci. Math. Ser. 3 (1990), no. 2, 99–106. MR 1105482
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 107-120
- MSC: Primary 46H40; Secondary 47B47, 47B80
- DOI: https://doi.org/10.1090/S0002-9939-1995-1217455-3
- MathSciNet review: 1217455