## $K$-groups of solenoidal algebras. I

HTML articles powered by AMS MathViewer

- by Berndt Brenken PDF
- Proc. Amer. Math. Soc.
**123**(1995), 1457-1464 Request permission

## Abstract:

Multiplication by*x*determines an automorphism of the compact dual group of ${\Lambda _g} = \mathbb {Z}[x,{x^{ - 1}}]/(g)$ for $g \in \mathbb {Z}[x]$. We determine the

*K*-groups of the ${C^ \ast }$-algebra associated with this dynamical system if

*g*is irreducible and has degree one or two. Partial results are included if the degree of

*g*is three.

## References

- Berndt Brenken,
*Isomorphism classes of solenoidal algebras. I*, Canad. Math. Bull.**36**(1993), no. 4, 414–418. MR**1245314**, DOI 10.4153/CMB-1993-056-2 - Berndt Brenken and Palle E. T. Jorgensen,
*A family of dilation crossed product algebras*, J. Operator Theory**25**(1991), no. 2, 299–308. MR**1203035** - George A. Elliott,
*Are amenable $C^*$-algebras classifiable?*, Representation theory of groups and algebras, Contemp. Math., vol. 145, Amer. Math. Soc., Providence, RI, 1993, pp. 423–427. MR**1216200**, DOI 10.1090/conm/145/22 - Bruce Kitchens and Klaus Schmidt,
*Automorphisms of compact groups*, Ergodic Theory Dynam. Systems**9**(1989), no. 4, 691–735. MR**1036904**, DOI 10.1017/S0143385700005290 - Mihai V. Pimsner,
*Embedding some transformation group $C^{\ast }$-algebras into AF-algebras*, Ergodic Theory Dynam. Systems**3**(1983), no. 4, 613–626. MR**753927**, DOI 10.1017/S0143385700002182
—, - M. Pimsner and D. Voiculescu,
*Exact sequences for $K$-groups and Ext-groups of certain cross-product $C^{\ast }$-algebras*, J. Operator Theory**4**(1980), no. 1, 93–118. MR**587369** - Klaus Schmidt,
*Algebraic ideas in ergodic theory*, CBMS Regional Conference Series in Mathematics, vol. 76, Published for the Conference Board of the Mathematical Sciences, Washington, DC; by the American Mathematical Society, Providence, RI, 1990. MR**1074576**, DOI 10.1090/cbms/076

*Ranges of traces on*${K_0}$

*of reduced crossed products by free groups*, Operator Algebras and their Connections with Topology and Ergodic Theory, Lecture Notes in Math., vol. 1132, Springer-Verlag, Heidelberg, 1985, pp. 374-408.

## Additional Information

- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**123**(1995), 1457-1464 - MSC: Primary 46L55; Secondary 19K14, 28D05, 46L05, 46L80
- DOI: https://doi.org/10.1090/S0002-9939-1995-1231292-5
- MathSciNet review: 1231292