Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Non-Smirnov domains

Author: Knut ├śyma
Journal: Proc. Amer. Math. Soc. 123 (1995), 1425-1429
MSC: Primary 30C20
MathSciNet review: 1264827
Full-text PDF Free Access

Abstract | References | Similar Articles | Additional Information

Abstract: If $\Omega$ is a Jordan domain, a small perturbation of the boundary gives a non-Smirnov domain.

References [Enhancements On Off] (What's this?)

  • E. F. Collingwood and A. J. Lohwater, The theory of cluster sets, Cambridge Tracts in Mathematics and Mathematical Physics, No. 56, Cambridge University Press, Cambridge, 1966. MR 0231999
  • Peter L. Duren, Theory of $H^{p}$ spaces, Pure and Applied Mathematics, Vol. 38, Academic Press, New York-London, 1970. MR 0268655
  • P. L. Duren, H. S. Shapiro, and A. L. Shields, Singular measures and domains not of Smirnov type, Duke Math. J. 33 (1966), 247ÔÇô254. MR 199359
  • John B. Garnett, Bounded analytic functions, Pure and Applied Mathematics, vol. 96, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1981. MR 628971
  • M. W. Keldysh and M. A. Lavrentiev, Sur la repr├ęsentation conforme des domaines limit├ęs par des courbes rectifiables, Ann. Sci. ├ëcole Norm. Sup. 54 (1937), 1-38.
  • I. I. Priwalow, Randeigenschaften analytischer Funktionen, Hochschulb├╝cher f├╝r Mathematik, Band 25, VEB Deutscher Verlag der Wissenschaften, Berlin, 1956 (German). Zweite, unter Redaktion von A. I. Markuschewitsch ├╝berarbeitete und erg├Ąnzte Auflage. MR 0083565

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC: 30C20

Retrieve articles in all journals with MSC: 30C20

Additional Information

Article copyright: © Copyright 1995 American Mathematical Society