Universal Pettis integrability property
HTML articles powered by AMS MathViewer
- by Gunnar F. Stefánsson
- Proc. Amer. Math. Soc. 123 (1995), 1431-1435
- DOI: https://doi.org/10.1090/S0002-9939-1995-1277135-5
- PDF | Request permission
Abstract:
Functions into duals and pre-duals of weakly compactly generated spaces (WCG) are studied. We show that a universally weakly measurable function f into a dual of a WCG has the RS property. Also, for such a function, we sharpen the decomposition obtained by E. M. Bator (1988). We show that bounded weakly measurable functions into pre-duals of WCG spaces are always Pettis integrable, universally weakly measurable, or not.References
- D. Amir and J. Lindenstrauss, The structure of weakly compact sets in Banach spaces, Ann. of Math. (2) 88 (1968), 35–46. MR 228983, DOI 10.2307/1970554
- Elizabeth M. Bator, Pettis decomposition for universally scalarly measurable functions, Proc. Amer. Math. Soc. 104 (1988), no. 3, 795–800. MR 964859, DOI 10.1090/S0002-9939-1988-0964859-6
- W. J. Davis, T. Figiel, W. B. Johnson, and A. Pełczyński, Factoring weakly compact operators, J. Functional Analysis 17 (1974), 311–327. MR 0355536, DOI 10.1016/0022-1236(74)90044-5
- R. S. Phillips, Integration in a convex linear topological space, Trans. Amer. Math. Soc. 47 (1940), 114–145. MR 2707, DOI 10.1090/S0002-9947-1940-0002707-3
- Lawrence H. Riddle, Elias Saab, and J. J. Uhl Jr., Sets with the weak Radon-Nikodým property in dual Banach spaces, Indiana Univ. Math. J. 32 (1983), no. 4, 527–541. MR 703283, DOI 10.1512/iumj.1983.32.32038
- Gunnar F. Stefánsson, Pettis integrability, Trans. Amer. Math. Soc. 330 (1992), no. 1, 401–418. MR 1070352, DOI 10.1090/S0002-9947-1992-1070352-0
- Michel Talagrand, Pettis integral and measure theory, Mem. Amer. Math. Soc. 51 (1984), no. 307, ix+224. MR 756174, DOI 10.1090/memo/0307
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 1431-1435
- MSC: Primary 46G10; Secondary 28B05, 46E40
- DOI: https://doi.org/10.1090/S0002-9939-1995-1277135-5
- MathSciNet review: 1277135