Free amalgams of rank two
HTML articles powered by AMS MathViewer
- by Shmuel Rosset
- Proc. Amer. Math. Soc. 123 (1995), 1351-1356
- DOI: https://doi.org/10.1090/S0002-9939-1995-1283563-4
- PDF | Request permission
Abstract:
For every $n > 1$ and $m > 1$ we construct an amalgamated free product $U{ \ast _W}V$ which is free of rank 2, while U is (free) of rank n , V is of rank m, and W is, necessarily, of rank $n + m - 2$.References
- Kenneth S. Brown, Cohomology of groups, Graduate Texts in Mathematics, vol. 87, Springer-Verlag, New York-Berlin, 1982. MR 672956, DOI 10.1007/978-1-4684-9327-6
- Leon Greenberg, Discrete groups of motions, Canadian J. Math. 12 (1960), 415–426. MR 115130, DOI 10.4153/CJM-1960-036-8
- Marshall Hall Jr. and Tibor Radó, On Schreier systems in free groups, Trans. Amer. Math. Soc. 64 (1948), 386–408. MR 26051, DOI 10.1090/S0002-9947-1948-0026051-0 R. C. Lyndon, The equation ${a^2}{b^2} = {c^2}$ in free groups, Michigan Math. J. 6 (1959), 155-164.
- Roger C. Lyndon and Paul E. Schupp, Combinatorial group theory, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 89, Springer-Verlag, Berlin-New York, 1977. MR 0577064
- Shmuel Rosset, Finite index and finite codimension, J. Pure Appl. Algebra 104 (1995), no. 1, 97–107. MR 1359694, DOI 10.1016/0022-4049(94)00120-8
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 1351-1356
- MSC: Primary 20E06; Secondary 20E05, 20F05
- DOI: https://doi.org/10.1090/S0002-9939-1995-1283563-4
- MathSciNet review: 1283563