$\textbf {Q}(t)$ and $\textbf {Q}((t))$-admissibility of groups of odd order
HTML articles powered by AMS MathViewer
- by Burton Fein and Murray Schacher
- Proc. Amer. Math. Soc. 123 (1995), 1639-1645
- DOI: https://doi.org/10.1090/S0002-9939-1995-1242083-3
- PDF | Request permission
Abstract:
Let $\mathbb {Q}(t)$ be the rational function field over the rationals, $\mathbb {Q}$, let $\mathbb {Q}((t))$ be the Laurent series field over $\mathbb {Q}$, and let $\mathcal {G}$ be a group of odd order. We investigate the following question: does there exist a finite-dimensional division algebra D central over $\mathbb {Q}(t)$ or $\mathbb {Q}((t))$ which is a crossed product for $\mathcal {G}$? If such a D exists, $\mathcal {G}$ is said to be $\mathbb {Q}(t)$-admissible (respectively, $\mathbb {Q}((t))$-admissible). We prove that if $\mathcal {G}$ is $\mathbb {Q}((t))$-admissible, then $\mathcal {G}$ is also $\mathbb {Q}(t)$-admissible; we also exhibit a $\mathbb {Q}(t)$-admissible group which is not $\mathbb {Q}((t))$-admissible.References
- Burton Fein and Murray Schacher, Crossed products over algebraic function fields, J. Algebra 171 (1995), no. 2, 531–540. MR 1315911, DOI 10.1006/jabr.1995.1026
- Burton Fein, David J. Saltman, and Murray Schacher, Crossed products over rational function fields, J. Algebra 156 (1993), no. 2, 454–493. MR 1216479, DOI 10.1006/jabr.1993.1084
- Bill Jacob and Adrian Wadsworth, Division algebras over Henselian fields, J. Algebra 128 (1990), no. 1, 126–179. MR 1031915, DOI 10.1016/0021-8693(90)90047-R
- Jürgen Neukirch, On solvable number fields, Invent. Math. 53 (1979), no. 2, 135–164. MR 560411, DOI 10.1007/BF01390030
- Richard S. Pierce, Associative algebras, Studies in the History of Modern Science, vol. 9, Springer-Verlag, New York-Berlin, 1982. MR 674652, DOI 10.1007/978-1-4757-0163-0
- Murray M. Schacher, Subfields of division rings. I, J. Algebra 9 (1968), 451–477. MR 227224, DOI 10.1016/0021-8693(68)90015-X
- Jean-Pierre Serre, Local fields, Graduate Texts in Mathematics, vol. 67, Springer-Verlag, New York-Berlin, 1979. Translated from the French by Marvin Jay Greenberg. MR 554237, DOI 10.1007/978-1-4757-5673-9 —, Cohomologie Galoisienne, Lecture Notes in Math., vol. 5, Springer-Verlag, Berlin, Heidelberg, and New York, 1964.
- Jack Sonn, Rational division algebras as solvable crossed products, Israel J. Math. 37 (1980), no. 3, 246–250. MR 599459, DOI 10.1007/BF02760966
- Jack Sonn, $\textbf {Q}$-admissibility of solvable groups, J. Algebra 84 (1983), no. 2, 411–419. MR 723399, DOI 10.1016/0021-8693(83)90085-6
- Edwin Weiss, Algebraic number theory, McGraw-Hill Book Co., Inc., New York-San Francisco-Toronto-London, 1963. MR 0159805
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 1639-1645
- MSC: Primary 12E15; Secondary 16K40
- DOI: https://doi.org/10.1090/S0002-9939-1995-1242083-3
- MathSciNet review: 1242083