Fractional powers of momentum of a spectral distribution
HTML articles powered by AMS MathViewer
- by M. Jazar
- Proc. Amer. Math. Soc. 123 (1995), 1805-1813
- DOI: https://doi.org/10.1090/S0002-9939-1995-1242090-0
- PDF | Request permission
Abstract:
In this paper we construct fractional and imaginary powers for the positive momentum B of a spectral distribution and prove the basic properties. The main result is that for any $\alpha > 0, - {B^\alpha }$ generates a bounded strongly continuous holomorphic semigroup of angle $\frac {\pi }{2}$. In particular for $\alpha = 1$, using Stone’s generalized theorem, if iB generates a k-times integrated group of type $O(|t{|^k})$ with $\sigma (B) \subset [0, + \infty [$, then -B generates a strongly continuous holomorphic semigroup of angle $\frac {\pi }{2}$. A similar corollary is given in the regularized group situation.References
- W. Arendt and H. Kellermann, Integrated solutions of Volterra integro-differential equations and applications, Semester-bericht Functionalanalysis, Tübingen, Sommersemester, 1987.
- Mikhael Balabane, Puissances fractionnaires d’un opérateur générateur d’un semi-groupe distribution régulier, Ann. Inst. Fourier (Grenoble) 26 (1976), no. 1, x, 157–203. MR 402534
- M. Balabane and H. A. Emamirad, Smooth distribution group and Schrödinger equation in $L^{p}(\textbf {R}^{n})$, J. Math. Anal. Appl. 70 (1979), no. 1, 61–71. MR 541059, DOI 10.1016/0022-247X(79)90075-1 —, Pseudo-differential parabolic systems in ${L^p}({\mathbb {R}^n})$, Contributions to Non-Linear P. D. E., Pitman Res. Notes Math. Ser., vol. 89, Longman Sci. Tech., Harlow, 1983.
- M. Balabane, H. Emamirad, and M. Jazar, Spectral distributions and generalization of Stone’s theorem, Acta Appl. Math. 31 (1993), no. 3, 275–295. MR 1232940, DOI 10.1007/BF00997121 Balakrishnan, Fractional powers of closed operators, Pacific J. Math. 10 (1960).
- S. Bochner, Diffusion equation and stochastic processes, Proc. Nat. Acad. Sci. U.S.A. 35 (1949), 368–370. MR 30151, DOI 10.1073/pnas.35.7.368
- G. Da Prato, Semigruppi regolarizzabili, Ricerche Mat. 15 (1966), 223–248 (Italian). MR 225199
- Ralph deLaubenfels, Integrated semigroups, $C$-semigroups and the abstract Cauchy problem, Semigroup Forum 41 (1990), no. 1, 83–95. MR 1048324, DOI 10.1007/BF02573380 —, C-semigroups and the abstract Cauchy problem, J. Funct. Anal. 111 (1993), 44-61.
- Ralph deLaubenfels, Totally accretive operators, Proc. Amer. Math. Soc. 103 (1988), no. 2, 551–556. MR 943083, DOI 10.1090/S0002-9939-1988-0943083-7
- Khristo Boyadzhiev and Ralph deLaubenfels, Boundary values of holomorphic semigroups, Proc. Amer. Math. Soc. 118 (1993), no. 1, 113–118. MR 1128725, DOI 10.1090/S0002-9939-1993-1128725-X R. deLaubenfels, H. Emamirad, and M. Jazar, Regularized scalar operators (submitted).
- H. Emamirad and M. Jazar, Applications of spectral distributions to some Cauchy problems in $L^p(\textbf {R}^n)$, Semigroup theory and evolution equations (Delft, 1989) Lecture Notes in Pure and Appl. Math., vol. 135, Dekker, New York, 1991, pp. 143–151. MR 1164647
- Matthias Hieber, Laplace transforms and $\alpha$-times integrated semigroups, Forum Math. 3 (1991), no. 6, 595–612. MR 1130001, DOI 10.1515/form.1991.3.595 M. Jazar, Sur la théorie de la distribution spectrale et applications aux problèmes de Cauchy, Thèse de l’Université de Poitiers, 1991.
- Oscar E. Lanford III and Derek W. Robinson, Fractional powers of generators of equicontinuous semigroups and fractional derivatives, J. Austral. Math. Soc. Ser. A 46 (1989), no. 3, 473–504. MR 987564, DOI 10.1017/S1446788700030950
- Celso Martínez, Miguel Sanz, and Luis Marco, Fractional powers of operators, J. Math. Soc. Japan 40 (1988), no. 2, 331–347. MR 930604, DOI 10.2969/jmsj/04020331
- Naoki Tanaka and Isao Miyadera, Some remarks on $C$-semigroups and integrated semigroups, Proc. Japan Acad. Ser. A Math. Sci. 63 (1987), no. 5, 139–142. MR 906977
- A. Pazy, Semigroups of linear operators and applications to partial differential equations, Applied Mathematical Sciences, vol. 44, Springer-Verlag, New York, 1983. MR 710486, DOI 10.1007/978-1-4612-5561-1 K. Yosida, Functional analysis, Springer-Verlag, Berlin, 1964.
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 1805-1813
- MSC: Primary 47D03; Secondary 35J10, 35P05, 47A60, 47N20
- DOI: https://doi.org/10.1090/S0002-9939-1995-1242090-0
- MathSciNet review: 1242090