Skew polynomial extensions of commutative Noetherian Jacobson rings
HTML articles powered by AMS MathViewer
- by K. R. Goodearl and E. S. Letzter
- Proc. Amer. Math. Soc. 123 (1995), 1673-1680
- DOI: https://doi.org/10.1090/S0002-9939-1995-1254840-8
- PDF | Request permission
Abstract:
The Jacobson condition (i.e., that all prime ideals are semiprimitive) is proved to pass from a commutative noetherian ring R to a skew polynomial ring $R[y;\tau ,\delta ]$, assuming only that $\tau$ is an automorphism.References
- Jeffrey Bergen, S. Montgomery, and D. S. Passman, Radicals of crossed products of enveloping algebras, Israel J. Math. 59 (1987), no. 2, 167–184. MR 920080, DOI 10.1007/BF02787259
- Barbara Cortzen and Lance W. Small, Finite extensions of rings, Proc. Amer. Math. Soc. 103 (1988), no. 4, 1058–1062. MR 954983, DOI 10.1090/S0002-9939-1988-0954983-6
- Miguel Ferrero and Kazuo Kishimoto, On differential rings and skew polynomials, Comm. Algebra 13 (1985), no. 2, 285–304. MR 772659, DOI 10.1080/00927878508823160
- Alfred Goldie and Gerhard Michler, Ore extensions and polycyclic group rings, J. London Math. Soc. (2) 9 (1974/75), 337–345. MR 357500, DOI 10.1112/jlms/s2-9.2.337
- K. R. Goodearl, Prime ideals in skew polynomial rings and quantized Weyl algebras, J. Algebra 150 (1992), no. 2, 324–377. MR 1176901, DOI 10.1016/S0021-8693(05)80036-5
- K. R. Goodearl and E. S. Letzter, Prime ideals in skew and $q$-skew polynomial rings, Mem. Amer. Math. Soc. 109 (1994), no. 521, vi+106. MR 1197519, DOI 10.1090/memo/0521
- K. R. Goodearl and R. B. Warfield Jr., An introduction to noncommutative Noetherian rings, London Mathematical Society Student Texts, vol. 16, Cambridge University Press, Cambridge, 1989. MR 1020298
- Ronald S. Irving, Prime ideals of Ore extensions over commutative rings. II, J. Algebra 58 (1979), no. 2, 399–423. MR 540647, DOI 10.1016/0021-8693(79)90169-8
- Ronald S. Irving, Generic flatness and the Nullstellensatz for Ore extensions, Comm. Algebra 7 (1979), no. 3, 259–277. MR 519702, DOI 10.1080/00927877908822347
- D. A. Jordan, Noetherian Ore extensions and Jacobson rings, J. London Math. Soc. (2) 10 (1975), 281–291. MR 389988, DOI 10.1112/jlms/s2-10.3.281
- T. H. Lenagan and R. B. Warfield Jr., Affiliated series and extensions of modules, J. Algebra 142 (1991), no. 1, 164–187. MR 1125211, DOI 10.1016/0021-8693(91)90223-U
- J. C. McConnell, The Nullstellensatz and Jacobson properties for rings of differential operators, J. London Math. Soc. (2) 26 (1982), no. 1, 37–42. MR 667242, DOI 10.1112/jlms/s2-26.1.37
- J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, Pure and Applied Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1987. With the cooperation of L. W. Small; A Wiley-Interscience Publication. MR 934572
- K. R. Pearson and W. Stephenson, A skew polynomial ring over a Jacobson ring need not be a Jacobson ring, Comm. Algebra 5 (1977), no. 8, 783–794. MR 439873, DOI 10.1080/00927877708822194
- J. F. Watters, Polynomial extensions of Jacobson rings, J. Algebra 36 (1975), no. 2, 302–308. MR 376765, DOI 10.1016/0021-8693(75)90105-2
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 1673-1680
- MSC: Primary 16S36; Secondary 16P40
- DOI: https://doi.org/10.1090/S0002-9939-1995-1254840-8
- MathSciNet review: 1254840