On a theorem of Hartman and Wintner
HTML articles powered by AMS MathViewer
- by P. W. Millar
- Proc. Amer. Math. Soc. 123 (1995), 1893-1896
- DOI: https://doi.org/10.1090/S0002-9939-1995-1260175-X
- PDF | Request permission
Abstract:
An elementary stochastic process argument is given for a measuretheoretic result of Hartman-Wintner, which asserts (under a natural condition) that an infinitely divisible measure has no atoms iff its corresponding Lévy measure has infinite mass.References
- J. R. Blum and Murray Rosenblatt, On the structure of infinitely divisible distributions, Pacific J. Math. 9 (1959), 1–7. MR 105729, DOI 10.2140/pjm.1959.9.1
- R. M. Blumenthal, An extended Markov property, Trans. Amer. Math. Soc. 85 (1957), 52–72. MR 88102, DOI 10.1090/S0002-9947-1957-0088102-2
- R. M. Blumenthal and R. K. Getoor, Markov processes and potential theory, Pure and Applied Mathematics, Vol. 29, Academic Press, New York-London, 1968. MR 0264757
- Leo Breiman, Probability, Addison-Wesley Publishing Co., Reading, Mass.-London-Don Mills, Ont., 1968. MR 0229267
- I. I. Gikhman and A. V. Skorokhod, Introduction to the theory of random processes, W. B. Saunders Co., Philadelphia, Pa.-London-Toronto, Ont., 1969. Translated from the Russian by Scripta Technica, Inc. MR 0247660
- Philip Hartman and Aurel Wintner, On the infinitesimal generators of integral convolutions, Amer. J. Math. 64 (1942), 273–298. MR 6635, DOI 10.2307/2371683 Loève, Probability theory, 4th ed., Springer-Verlag, Berlin and New York, 1977.
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 1893-1896
- MSC: Primary 60E07; Secondary 60G17, 60J30
- DOI: https://doi.org/10.1090/S0002-9939-1995-1260175-X
- MathSciNet review: 1260175