Periodicity and indecomposability
HTML articles powered by AMS MathViewer
- by W. T. Ingram
- Proc. Amer. Math. Soc. 123 (1995), 1907-1916
- DOI: https://doi.org/10.1090/S0002-9939-1995-1283553-1
- PDF | Request permission
Abstract:
In this paper we characterize the existence of periodic points of odd period greater than one for unimodal mappings of an interval onto itself. The interesting juxtaposition of this condition with the occurrence in inverse limits of the well-known Brouwer-Janiszewski-Knaster continuum is explored. Also obtained is a characterization of indecomposability of certain inverse limits using a single unimodal bonding map.References
- Marcy Barge and Joe Martin, Chaos, periodicity, and snakelike continua, Trans. Amer. Math. Soc. 289 (1985), no. 1, 355–365. MR 779069, DOI 10.1090/S0002-9947-1985-0779069-7 Ralph Bennett, On Inverse Limit Sequences, Master’s Thesis, University of Tennessee, 1962.
- Pierre Collet and Jean-Pierre Eckmann, Iterated maps on the interval as dynamical systems, Progress in Physics, vol. 1, Birkhäuser, Boston, Mass., 1980. MR 613981
- James F. Davis, Confluent mappings on $[0,1]$ and inverse limits, Topology Proc. 15 (1990), 1–9. MR 1159076
- Robert L. Devaney, An introduction to chaotic dynamical systems, The Benjamin/Cummings Publishing Co., Inc., Menlo Park, CA, 1986. MR 811850
- W. T. Ingram, Concerning periodic points in mappings of continua, Proc. Amer. Math. Soc. 104 (1988), no. 2, 643–649. MR 962842, DOI 10.1090/S0002-9939-1988-0962842-8
- W. T. Ingram, Periodic points for homeomorphisms of hereditarily decomposable chainable continua, Proc. Amer. Math. Soc. 107 (1989), no. 2, 549–553. MR 984796, DOI 10.1090/S0002-9939-1989-0984796-1
- K. Kuratovskiĭ, Topologiya. Tom 2, Izdat. “Mir”, Moscow, 1969 (Russian). Translated from the English by M. Ja. Antonovskiĭ. MR 0259836
- D. P. Kuykendall, Irreducibility and indecomposability in inverse limits, Fund. Math. 80 (1973), no. 3, 265–270. MR 326684, DOI 10.4064/fm-80-3-265-270
- John Milnor and William Thurston, On iterated maps of the interval, Dynamical systems (College Park, MD, 1986–87) Lecture Notes in Math., vol. 1342, Springer, Berlin, 1988, pp. 465–563. MR 970571, DOI 10.1007/BFb0082847
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 1907-1916
- MSC: Primary 58F08; Secondary 54H20, 58F03, 58F20
- DOI: https://doi.org/10.1090/S0002-9939-1995-1283553-1
- MathSciNet review: 1283553