Normalizing elements in PI rings
HTML articles powered by AMS MathViewer
- by Robert M. Guralnick, J. Chris Robson and Lance W. Small
- Proc. Amer. Math. Soc. 123 (1995), 1955-1957
- DOI: https://doi.org/10.1090/S0002-9939-1995-1301026-4
- PDF | Request permission
Abstract:
This paper explores the question: If R is a prime PI ring and a an element such that $aR \supseteq Ra$, is it true that $aR = Ra$?References
- Amiram Braun and L. W. Small, Localization in prime Noetherian p.i. rings, Math. Z. 193 (1986), no. 3, 323–330. MR 862879, DOI 10.1007/BF01229800 P. M. Cohn, Algebra III, Wiley, New York and Chichester, 1991.
- S. Montgomery, A generalized Picard group for prime rings, Topics in algebra, Part 1 (Warsaw, 1988) Banach Center Publ., vol. 26, PWN, Warsaw, 1990, pp. 55–63. MR 1171225
- J. C. McConnell and J. C. Robson, Noncommutative Noetherian rings, Pure and Applied Mathematics (New York), John Wiley & Sons, Ltd., Chichester, 1987. With the cooperation of L. W. Small; A Wiley-Interscience Publication. MR 934572
Bibliographic Information
- © Copyright 1995 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 123 (1995), 1955-1957
- MSC: Primary 16R20
- DOI: https://doi.org/10.1090/S0002-9939-1995-1301026-4
- MathSciNet review: 1301026