## Representing the automorphism group of an almost crystallographic group

HTML articles powered by AMS MathViewer

- by Paul Igodt and Wim Malfait PDF
- Proc. Amer. Math. Soc.
**124**(1996), 331-340 Request permission

## Abstract:

Let $E$ be an almost crystallographic (AC-) group, corresponding to the simply connected, connected, nilpotent Lie group $L$ and with holonomy group $F$. If $L^F = \{1\}$, there is a faithful representation $\operatorname {Aut}{E} \hookrightarrow \operatorname {Aff}(L)$. In case $E$ is crystallographic, this condition $L^F =\{1\}$ is known to be equivalent to $Z(E)=1$ or $b_1(E)=0$. We will show (Example 2.2) that, for AC-groups $E$, this is no longer valid and should be adapted. A generalised equivalent algebraic (and easier to verify) condition is presented (Theorem 2.3). Corresponding to an AC-group $E$ and by factoring out subsequent centers we construct a series of AC-groups, which becomes constant after a finite number of terms. Under suitable conditions, this opens a way to represent $\operatorname {Aut}{E}$ faithfully in $\mathrm {Gl}(k,\mathbb {Z}{}{}) \times \operatorname {Aff}(L_1)$ (Theorem 4.1). We show how this can be used to calculate $\operatorname {Out}{E}$. This is of importance, especially, when $E$ is almost Bieberbach and, hence, $\operatorname {Out}{E}$ is known to have an interesting geometric meaning.## References

- Louis Auslander,
*Bieberbach’s theorems on space groups and discrete uniform subgroups of Lie groups*, Ann. of Math. (2)**71**(1960), 579–590. MR**121423**, DOI 10.2307/1969945 - P. E. Conner and Frank Raymond,
*Deforming homotopy equivalences to homeomorphisms in aspherical manifolds*, Bull. Amer. Math. Soc.**83**(1977), no. 1, 36–85. MR**467777**, DOI 10.1090/S0002-9904-1977-14179-7 - Karel Dekimpe,
*Almost Bieberbach groups: cohomology, construction and classification*, Doctoral Thesis, K.U. Leuven, 1993. - Karel Dekimpe, Paul Igodt, Suhyung Kim, and Kyung Bai Lee,
*Affine structures for closed $3$-dimensional manifolds with nil-geometry*, Quart. J. Math. Oxford. Ser. (2)**46**(1995), 141–167. - Karel Dekimpe, Paul Igodt, and Wim Malfait,
*On the fitting subgroup of almost crystallographic groups*, Tijdschrift van het Belgisch Wiskundig Genootschap**B**(1993), 35–47. - Fritz Grunewald and Dan Segal,
*On affine crystallographic groups*, preprint, 1992. - Howard Hiller and Chih-Han Sah,
*Holonomy of flat manifolds with $b_1=0$*, Quart. J. Math. Oxford Ser. (2)**37**(1986), no. 146, 177–187. MR**841425**, DOI 10.1093/qmath/37.2.177 - Paul Igodt and Wim Malfait,
*Extensions realising a faithful abstract kernel and their automorphisms*, Manuscripta Math.**84**(1994), 135–161. - Kyung Bai Lee,
*Geometric realization of $\pi _{0}{\cal E}(M)$*, Proc. Amer. Math. Soc.**86**(1982), no. 2, 353–357. MR**667306**, DOI 10.1090/S0002-9939-1982-0667306-1 - Kyung Bai Lee,
*There are only finitely many infra-nilmanifolds under each nilmanifold*, Quart. J. Math. Oxford Ser. (2)**39**(1988), no. 153, 61–66. MR**929795**, DOI 10.1093/qmath/39.1.61 - Kyung Bai Lee and Frank Raymond,
*Rigidity of almost crystallographic groups*, Combinatorial methods in topology and algebraic geometry (Rochester, N.Y., 1982) Contemp. Math., vol. 44, Amer. Math. Soc., Providence, RI, 1985, pp. 73–78. MR**813102**, DOI 10.1090/conm/044/813102 - Charles Hopkins,
*Rings with minimal condition for left ideals*, Ann. of Math. (2)**40**(1939), 712–730. MR**12**, DOI 10.2307/1968951 - Donald S. Passman,
*The algebraic structure of group rings*, Pure and Applied Mathematics, Wiley-Interscience [John Wiley & Sons], New York-London-Sydney, 1977. MR**0470211** - Daniel Segal,
*Polycyclic groups*, Cambridge Tracts in Mathematics, vol. 82, Cambridge University Press, Cambridge, 1983. MR**713786**, DOI 10.1017/CBO9780511565953

## Additional Information

**Paul Igodt**- Affiliation: Department of Mathematics, Katholieke Universiteit Leuven Campus Kortrijk, Universitaire Campus, B-8500 Kortrijk, Belgium
**Wim Malfait**- Affiliation: Department of Mathematics, Katholieke Universiteit Leuven Campus Kortrijk, Universitaire Campus, B-8500 Kortrijk, Belgium
- Received by editor(s): May 5, 1994
- Additional Notes: The second author is Research Assistant of the National Fund For Scientific Research (Belgium)
- Communicated by: Ron Solomon
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**124**(1996), 331-340 - MSC (1991): Primary 20H15, 20F34, 20F28
- DOI: https://doi.org/10.1090/S0002-9939-96-03141-3
- MathSciNet review: 1301030