On when a graded ring is graded equivalent

to a crossed product

Author:
Jeremy Haefner

Journal:
Proc. Amer. Math. Soc. **124** (1996), 1013-1021

MSC (1991):
Primary 16D90, 16S35, 16S40, 16S50, 16W50

DOI:
https://doi.org/10.1090/S0002-9939-96-03138-3

MathSciNet review:
1301027

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: Let be a ring graded by a group . We are concerned with describing those -graded rings that are graded equivalent to -crossed products. We give necessary and sufficient conditions for when a strongly graded ring is graded equivalent to a crossed product, provided that the 1-component is either Azumaya or semiperfect. Our result uses the torsion product theorem of Bass and Guralnick. We also construct various examples of such rings.

**1.**D. F. Anderson,*The kernel of for a graded domain*, Mathematical Reports of the Academy of Science, vol. 13, The Royal Society of Canada, 1991, pp. 248--253. MR**92j:13001****2.**F. Anderson and K. Fuller,*Rings and categories of modules*, Springer-Verlag, New York, 1974. MR**54:5281****3.**H. Bass,*Algebraic -theory*, Benjamin, New York, 1968. MR**40:2736****4.**H. Bass and R. Guralnick,*Projective modules with free multiples and powers*, Proc. Amer. Math. Soc.**96**(1986), 207--208. MR**87a:13011****5.**------,*Torsion in the Picard group and extension of scalars*, J. Pure Appl. Algebra,**52**(1988), 213--217. MR**89e:13006****6.**M. Beattie,*A generalization of the smash product of a graded ring*, J. Pure Appl. Algebra**52**(1988), 219--226. MR**89k:16005****7.**M. Cohen and S. Montgomery,*Group-graded rings, smash products, and group actions*, Trans. Amer. Math. Soc.**282**(1984), 237--258. MR**85i:16002****8.**C. Curtis and I. Reiner,*Methods of representation theory with applications to finite groups and orders*, Vol. 2, Wiley, New York, 1987. MR**88f:20002****9.**E. Dade,*Group-graded rings and modules*, Math. Z.**174**(1980), 241--262. MR**82c:16028****10.**R. Guralnick,*Bimodules over pi rings*, Methods in Module Theory, Marcel Dekker, New York, 1993, pp. 117--134. MR**94a:16001****11.**R. Guralnick and S. Montgomery,*On invertible bimodules and automorphisms of noncommutative rings*, Trans. Amer. Math. Soc.**341**(1994), 917--937. MR**94d:16027****12.**R. Gordon and E. Green,*Graded Artin algebras*, J. Algebra**76**(1982), 111--137. MR**83m:16028a****13.**J. Haefner,*Graded Morita theory for infinite groups*, J. Algebra**169**(1994), 552--586. MR**95j:16051****14.**------,*Graded equivalence theory with applications*, J. Algebra**172**(1995), 385--423. CMP**95:09****15.**------,*A strongly graded ring that is not graded equivalent to a skew group ring*, Comm. Algebra**22**(1994), 4795--4799. MR**95c:16055****16.**C. Menini and C. N\u{a}st\u{a}sescu,*When is R-gr equivalent to the category of modules*? J. Pure Appl. Algebra**51**(1988), 277--291. MR**89f:16002****17.**D. Passman,*Infinite crossed products*, Academic Press, New York, 1989. MR**90g:16002****18.**D. Quinn,*Group-graded rings and duality*, Trans. Amer. Math. Soc.**292**(1985), 155--167. MR**87d:16002****19.**A. del Río,*Graded rings and equivalences of categories*, Comm. Algebra**19**(1991), 997--1012. MR**92d:16011**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
16D90,
16S35,
16S40,
16S50,
16W50

Retrieve articles in all journals with MSC (1991): 16D90, 16S35, 16S40, 16S50, 16W50

Additional Information

**Jeremy Haefner**

Email:
haefner@math.uccs.edu

DOI:
https://doi.org/10.1090/S0002-9939-96-03138-3

Received by editor(s):
April 26, 1994

Received by editor(s) in revised form:
September 6, 1994

Additional Notes:
The author’s research was partially supported by the National Security Agency

Communicated by:
Ken Goodearl

Article copyright:
© Copyright 1996
American Mathematical Society