A free product of finitely generated

nilpotent groups amalgamating a cycle

that is not subgroup separable

Authors:
R. B. J. T. Allenby and David Doniz

Journal:
Proc. Amer. Math. Soc. **124** (1996), 1003-1005

MSC (1991):
Primary 20E06, 20E26, 20F18; Secondary 20F10

DOI:
https://doi.org/10.1090/S0002-9939-96-03567-8

MathSciNet review:
1350930

Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: We exhibit a counterexample to a recent assertion concerning the subgroup separability of groups in the title. The example also serves as a simplification of work of Gitik and Rips.

**1.**R. B. J. T. Allenby,*The potency of cyclically pinched one-relator groups*, Arch. Math.**36**(1981), 204--210. MR**83c:20047****2.**G. Baumslag,*On the residual finiteness of generalized free products of nilpotent groups*, Trans. Amer. Math. Soc.**106**(1963), 192--209. MR**26:2489****3.**A. M. Brunner, R. G. Burns, D. Solitar,*The subgroup separability of free products of two free groups with cyclic amalgamation*, Contemp. Math., no. 33, Amer. Math. Soc., Providence, RI, 1984, pp. 90--115. MR**86e:20033****4.**B. Evans,*Cyclic amalgamations of residually finite groups*, Pacific J. Math.**55**(1974), 371--379. MR**51:8257****5.**R. Gitik, E. Rips,*A necessary condition for to be LERF*, Israel J. Math.**73**(1991), 123--125.**92g:20046****6.**G. Kim,*Cyclic subgroup separability of generalized free products*, Canadian Math. Bull.**36**(1993), 296--302. MR**95d:20056****7.**G. Kim, James McCarron,*On amalgamated free products of residually -finite groups*, J. Algebra**162**(1993), 1--11. MR**94k:20049****8.**H. L. Koay, P. C. Wong,*Generalized free products of groups*, Rocky Mountain J. Math.**22**(1992), 1589--1593. MR**93j:20055****9.**W. Magnus,*Beziehungen zwischen Gruppen und Idealen in einem speziellen Ring*, Math. Ann.**111**(1935), 259--280.**10.**E. Rips,*An example of a non-LERF group which is a free product of LERF groups with an amalgamated cyclic subgroup*, Israel J. Math.**70**(1990), 104--110. MR**91d:20029****11.**N. S. Romanovskii,*On the residual finiteness of free products with respect to subgroups*, Izv. Akad. Nauk SSSR Ser. Mat.**33**(1969), 1324--1329 (Russian). MR**41:1885****12.**P. Scott,*Subgroups of surface groups are almost geometric*, J. London Math. Soc.**17**(1978), 555--565. MR**58:12996****13.**C. Y. Tang,*On the subgroup separability of generalized free products of nilpotent groups*, Proc. Amer. Math. Soc.**113**2 (1991), 313--318. MR**92c:20043**

Retrieve articles in *Proceedings of the American Mathematical Society*
with MSC (1991):
20E06,
20E26,
20F18,
20F10

Retrieve articles in all journals with MSC (1991): 20E06, 20E26, 20F18, 20F10

Additional Information

**R. B. J. T. Allenby**

Affiliation:
School of Mathematics, University of Leeds, Leeds LS2 9JT, England

Email:
pmt6ra@leeds.ac.uk

**David Doniz**

Affiliation:
School of Mathematics, University of Leeds, Leeds LS2 9JT, England

DOI:
https://doi.org/10.1090/S0002-9939-96-03567-8

Keywords:
Generalized free products,
nilpotent groups,
residual finiteness,
subgroup separability

Received by editor(s):
May 25, 1994

Communicated by:
Ronald M. Solomon

Article copyright:
© Copyright 1996
American Mathematical Society