Remote Access Proceedings of the American Mathematical Society
Green Open Access

Proceedings of the American Mathematical Society

ISSN 1088-6826(online) ISSN 0002-9939(print)



Hereditarily aspherical compacta

Authors: Jerzy Dydak and Katsuya Yokoi
Journal: Proc. Amer. Math. Soc. 124 (1996), 1933-1940
MSC (1991): Primary 55M10, 54F45
MathSciNet review: 1307513
Full-text PDF

Abstract | References | Similar Articles | Additional Information

Abstract: The notion of (strongly) hereditarily aspherical compacta introduced by Daverman (1991) is modified. The main results are:

Theorem. If $X\in LC^{1}$ is a hereditarily aspherical compactum, then $X\in $ ANR. In particular, $X$ is strongly hereditarily aspherical.

Theorem. Suppose $f:X\to Y$ is a cell-like map of compacta and $f^{-1}(A)$ is shape aspherical for each closed subset $A$ of $Y$. Then

Y is hereditarily shape aspherical,
$f$ is a hereditary shape equivalence,
$\dim X\ge \dim Y$.

Theorem. Suppose $G$ is a group containing integers. Then the following conditions are equivalent:

$\dim X\le 2$ and $\dim _{G}X=1$,
$\dim _{G*_{{\mathbf Z} }G}X=1$.

Theorem. Suppose $G$ is a group containing integers. If $\dim X\le 2$ and $\dim _{G}X=1$, then $X$ is hereditarily shape aspherical.

Theorem. Let $X$ be a two-dimensional, locally connected and semilocally simply connected compactum. Then, for any compactum $Y$

\begin{equation*}\dim (X \times Y) = \dim X + \dim Y.\end{equation*}

References [Enhancements On Off] (What's this?)

  • [A] P.S.Alexandroff, Dimensionstheorie, ein Beitrag zur Geometrie der abgesehlossenen
    , Math. Ann. 106 (1932), 161--238.
  • [Bol-1] V.G.Boltyanskii, An example of a two-dimensional compactum whose topological square is three-dimensional, Dokl. Acad. Nauk SSSR 67 (1949), 597--599 (Russian). MR 11:45e
  • [Bol-2] ------, On dimensional full valuedness of compacta, Dokl. Acad. Nauk SSSR 67 (1949), 773--777 (Russian). MR 11:195j
  • [Bor-1] K.Borsuk, Concerning the cartesian product of Cantor-manifolds, Fund. Math. 37 (1951), 55--72. MR 14:72e
  • [Bor-2] ------, Theory of retracts, PWN, Warszaw, 1967. MR 35:7306
  • [C] T.A.Chapman, Lectures on Hilbert cube manifolds, CBMS Regional Conference Series in Mathematics No.28, AMS, 1975, pp. 1-131. MR 54:11336
  • [Da-1] R.J.Daverman, Decompositions of manifolds, Academic Press, Orlando, 1986. MR 88a:57001
  • [Da-2] ------, Hereditarily aspherical compacta and cell-like maps, Topology Appl. 41 (1991), 247--254. MR 93b:54033
  • [D-D] R.J.Daverman and A.N. Dranishnikov, Cell-like maps and aspherical compacta (to appear).
  • [Dra] A.N.Dranishnikov, Homological dimension theory, Russian Math. Surveys 43(4) (1988), 11--63. MR 90e:55003
  • [D-R] A.N.Dranishnikov and D.Repovs, Cohomological dimension with respect to perfect groups, preprint, 1991.
  • [Dy-1] J.Dydak, The Whitehead and Smale theorems in shape theory, Dissert. Math. 156 (1979), 1--51. MR 80h:55008
  • [Dy-2] ------, Cohomological dimension and metrizable spaces, Transactions of the Amer.Math.
    Soc. 337 (1993), 219--234. MR 93g:55001
  • [D-S-1] J.Dydak and J.Segal, Shape theory: An introduction, Lecture Notes in Math. 688
    , Springer Verlag, 1978, pp. 1--150. MR 80h:54020
  • [D-S-2] ------, Local n-connectivity of decomposition spaces, Topology and its Appl. 18 (1984), 43--58. MR 86a:54043
  • [En] R.Engelking, Dimension Theory, Math. Library, North-Holland, 1978. MR 58:2753b
  • [Hu] S.T.Hu, Theory of retracts, Wayne State University Press, 1965, pp. 1-234. MR 31:6202
  • [Ko-1] Y.Kodama, On homotopically stable points and product spaces, Fund. Math. 44 (1957), 171--185. MR 20:279
  • [Ko-2] ------, Cohomological dimension theory, Appendix to K. Nagami, Dimension theory, Academic Press, New York, 1970.
  • [Ku] V.I Kuz'minov, Homological dimension theory, Russian Math. Surveys 23 (1968), 1--45. MR 39:2158
  • [P] L.Pontryagin, Sur une hypothese fondamentale de la theorie de la dimension, C. R. Acad. Sci. Paris 190 (1930), 1105--1107.
  • [Sp] E.Spanier, Algebraic topology, McGraw-Hill, New York, 1966. MR 35:1007
  • [Wa] J.J.Walsh, Dimension, cohomological dimension, and cell-like mappings, Lecture Notes in Math. 870, Springer-Verlag, 1981, pp. 105--118. MR 83a:57021
  • [We] J.West, Open problems in infinite dimensional topology, Open Problems in Topology, North-Holland, 1990. CMP 91:03
  • [Wh] George W.Whitehead, Elements of homotopy theory, Springer-Verlag, New York, 1978. MR 80b:55001

Similar Articles

Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 55M10, 54F45

Retrieve articles in all journals with MSC (1991): 55M10, 54F45

Additional Information

Jerzy Dydak
Affiliation: Department of Mathematics, University of Tennessee, Knoxville, Tennessee 37996

Katsuya Yokoi
Affiliation: Institute of Mathematics, University of Tsukuba, Tsukuba-shi, Ibaraki, 305, Japan

Keywords: Dimension, cohomological dimension, aspherical compacta, ANR's, absolute extensors, cell-like maps
Received by editor(s): April 6, 1994
Received by editor(s) in revised form: November 19, 1994
Communicated by: James West
Article copyright: © Copyright 1996 American Mathematical Society