Non-commutative disc algebras and their representations
HTML articles powered by AMS MathViewer
- by Gelu Popescu
- Proc. Amer. Math. Soc. 124 (1996), 2137-2148
- DOI: https://doi.org/10.1090/S0002-9939-96-03514-9
- PDF | Request permission
Abstract:
It is shown that the smallest closed subalgebra \begin{equation*}Alg(I_{ \mathcal {K}} ,V_{1},\dots ,V_{n})\subset \mathcal {B} (\mathcal {K}) \qquad (n=2,3,\dots ,\infty )\end{equation*} generated by any sequence $V_{1},\dots , V_{n}$ of isometries on a Hilbert space $\mathcal {K}$ such that $V_{1}V_{1}^{*}+\cdots +V_{n}V_{n}^{*}\le I_{\mathcal {K}}$ is completely isometrically isomorphic to the non-commutative “disc” algebra $\mathcal {A} _{n}$ introduced in Math. Scand. 68 (1991), 292–304. We also prove that for $n\ne m$ the Banach algebras $\mathcal {A} _{n}$ and $\mathcal {A} _{m}$ are not isomorphic. In particular, we give an example of two non-isomorphic Banach algebras which are completely isometrically embedded in each other. The completely bounded (contractive) representations of the “disc” algebras $\mathcal {A} _{n} (n=2,3,\dots ,\infty )$ on a Hilbert space are characterized. In particular, we prove that a sequence of operators $A_{1},A_{2},\dots$ is simultaneously similar to a contractive sequence $T_{1},T_{2},\dots$ (i.e., $T_{1}T_{1}^{*}+\cdots +T_{n}T_{n}^{*} \le I$ ) if and only if it is completely polynomially bounded. The first cohomology group of $\mathcal {A} _{n}$ with coefficients in $\mathbb {C}$ is calculated, showing, in particular, that the disc algebras are not amenable. Similar results are proved for the non-commutative Hardy algebras $F_{n}^{\infty }$ introduced in Math. Scand. 68 (1991), 292–304. The right joint spectrum of the left creation operators on the full Fock space is also determined.References
- A. Arias, Completely bounded isomorphisms of operator algebras, Proc.Amer.Math.Soc. 124 (1966), 1091–1101.
- William B. Arveson, Subalgebras of $C^{\ast }$-algebras, Acta Math. 123 (1969), 141–224. MR 253059, DOI 10.1007/BF02392388
- Frank F. Bonsall and John Duncan, Complete normed algebras, Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 80, Springer-Verlag, New York-Heidelberg, 1973. MR 0423029, DOI 10.1007/978-3-642-65669-9
- John Bunce, The joint spectrum of commuting nonnormal operators, Proc. Amer. Math. Soc. 29 (1971), 499–505. MR 283602, DOI 10.1090/S0002-9939-1971-0283602-7
- John W. Bunce, Models for $n$-tuples of noncommuting operators, J. Funct. Anal. 57 (1984), no. 1, 21–30. MR 744917, DOI 10.1016/0022-1236(84)90098-3
- L. A. Coburn, The $C^{\ast }$-algebra generated by an isometry, Bull. Amer. Math. Soc. 73 (1967), 722–726. MR 213906, DOI 10.1090/S0002-9904-1967-11845-7
- Joachim Cuntz, Simple $C^*$-algebras generated by isometries, Comm. Math. Phys. 57 (1977), no. 2, 173–185. MR 467330, DOI 10.1007/BF01625776
- Jacques Dixmier, $C^*$-algebras, North-Holland Mathematical Library, Vol. 15, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1977. Translated from the French by Francis Jellett. MR 0458185
- David E. Evans, On $O_{n}$, Publ. Res. Inst. Math. Sci. 16 (1980), no. 3, 915–927. MR 602475, DOI 10.2977/prims/1195186936
- Sergio Sispanov, Generalización del teorema de Laguerre, Bol. Mat. 12 (1939), 113–117 (Spanish). MR 3
- William L. Paschke and Norberto Salinas, Matrix algebras over $O_{n}$, Michigan Math. J. 26 (1979), no. 1, 3–12. MR 514956
- Vern I. Paulsen, Every completely polynomially bounded operator is similar to a contraction, J. Funct. Anal. 55 (1984), no. 1, 1–17. MR 733029, DOI 10.1016/0022-1236(84)90014-4
- Vern I. Paulsen, Completely bounded maps and dilations, Pitman Research Notes in Mathematics Series, vol. 146, Longman Scientific & Technical, Harlow; John Wiley & Sons, Inc., New York, 1986. MR 868472
- Mihai V. Pimsner and Sorin T. Popa, The $\textrm {Ext}$-groups of some $C^{\ast }$-algebras considered by J. Cuntz, Rev. Roumaine Math. Pures Appl. 23 (1978), no. 7, 1069–1076. MR 509606
- Gelu Popescu, Models for infinite sequences of noncommuting operators, Acta Sci. Math. (Szeged) 53 (1989), no. 3-4, 355–368. MR 1033608
- Gelu Popescu, Isometric dilations for infinite sequences of noncommuting operators, Trans. Amer. Math. Soc. 316 (1989), no. 2, 523–536. MR 972704, DOI 10.1090/S0002-9947-1989-0972704-3
- Gelu Popescu, von Neumann inequality for $(B({\scr H})^n)_1$, Math. Scand. 68 (1991), no. 2, 292–304. MR 1129595, DOI 10.7146/math.scand.a-12363
- G. Popescu, Multi–analytic operators on Fock spaces, Math.Ann. 303 (1995), 31–46.
- G. Popescu, Functional calculus for noncommuting operators, Michigan Math.J. 42 (1995), 345–356.
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- Béla Sz.-Nagy and Ciprian Foiaş, Harmonic analysis of operators on Hilbert space, North-Holland Publishing Co., Amsterdam-London; American Elsevier Publishing Co., Inc., New York; Akadémiai Kiadó, Budapest, 1970. Translated from the French and revised. MR 0275190
- C. J. Everett Jr., Annihilator ideals and representation iteration for abstract rings, Duke Math. J. 5 (1939), 623–627. MR 13
Bibliographic Information
- Gelu Popescu
- Affiliation: Division of Mathematics, Computer Science and Statistics, The University of Texas at San Antonio, San Antonio, Texas 78249
- MR Author ID: 234950
- Email: gpopescu@ringer.cs.utsa.edu
- Received by editor(s): January 30, 1995
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1996 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 124 (1996), 2137-2148
- MSC (1991): Primary 47D25; Secondary 47A67
- DOI: https://doi.org/10.1090/S0002-9939-96-03514-9
- MathSciNet review: 1343719