Subalgebras of free algebras
Authors:
A. A. Mikhalev, V. E. Shpilrain and A. A. Zolotykh
Journal:
Proc. Amer. Math. Soc. 124 (1996), 1977-1984
MSC (1991):
Primary 17B01; Secondary 16S10, 13F20
DOI:
https://doi.org/10.1090/S0002-9939-96-03593-9
MathSciNet review:
1350957
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: We use non-commutative Jacobian matrix to get information on finitely generated subalgebras of a free Lie algebra. In particular, we show that the rank of such a subalgebra is equal to the left rank (i.e., to the maximal number of left independent rows) of the corresponding Jacobian matrix; this also yields an effective procedure for finding the rank of a finitely generated subalgebra.
- 1. Hyman Bass, Edwin H. Connell, and David Wright, The Jacobian conjecture: reduction of degree and formal expansion of the inverse, Bull. Amer. Math. Soc. (N.S.) 7 (1982), no. 2, 287–330. MR 663785, https://doi.org/10.1090/S0273-0979-1982-15032-7
- 2. Joan S. Birman, An inverse function theorem for free groups, Proc. Amer. Math. Soc. 41 (1973), 634–638. MR 330295, https://doi.org/10.1090/S0002-9939-1973-0330295-8
- 3. P. M. Cohn, Free rings and their relations, 2nd ed., London Mathematical Society Monographs, vol. 19, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], London, 1985. MR 800091
- 4. Warren Dicks and Jacques Lewin, A Jacobian conjecture for free associative algebras, Comm. Algebra 10 (1982), no. 12, 1285–1306. MR 660345, https://doi.org/10.1080/00927878208822776
- 5. R. H. Fox, Free differential calculus. I. Derivations in free group rings. Ann. of Math. (2) 57 (1953), 547--560. MR 14:843d
- 6. Hideyuki Matsumura, Commutative algebra, W. A. Benjamin, Inc., New York, 1970. MR 0266911
- 7. A. A. Zolotykh and A. A. Mikhalëv, The rank of an element of a free Lie (𝑝)-superalgebra, Dokl. Akad. Nauk 334 (1994), no. 6, 690–693 (Russian); English transl., Russian Acad. Sci. Dokl. Math. 49 (1994), no. 1, 189–193. MR 1273933
- 8. Alexander A. Mikhalev and Andrej A. Zolotykh, Rank and primitivity of elements of free colour Lie (𝑝-)superalgebras, Internat. J. Algebra Comput. 4 (1994), no. 4, 617–655. MR 1313130, https://doi.org/10.1142/S021819679400018X
- 9. Christophe Reutenauer, Applications of a noncommutative Jacobian matrix, J. Pure Appl. Algebra 77 (1992), no. 2, 169–181. MR 1149019, https://doi.org/10.1016/0022-4049(92)90083-R
- 10. Christophe Reutenauer, Free Lie algebras, London Mathematical Society Monographs. New Series, vol. 7, The Clarendon Press, Oxford University Press, New York, 1993. Oxford Science Publications. MR 1231799
- 11. A. H. Schofield, Representation of rings over skew fields, London Mathematical Society Lecture Note Series, vol. 92, Cambridge University Press, Cambridge, 1985. MR 800853
- 12. A. I. Shirshov, Subalgebras of free Lie algebras. Mat. Sb. 33 (1953), 441--452 (in Russian). MR 15:596d
- 13. Vladimir Shpilrain, On generators of 𝐿/𝑅² Lie algebras, Proc. Amer. Math. Soc. 119 (1993), no. 4, 1039–1043. MR 1154249, https://doi.org/10.1090/S0002-9939-1993-1154249-X
- 14. V. Shpilrain, On monomorphisms of free groups. Arch. Math., 46 (1995), 465-470. CMP 95:12
- 15. U. U. Umirbaev, Partial derivations and endomorphisms of some relatively free Lie algebras, Sibirsk. Mat. Zh. 34 (1993), no. 6, 179–188, iv, x (Russian, with English and Russian summaries); English transl., Siberian Math. J. 34 (1993), no. 6, 1161–1170. MR 1268170, https://doi.org/10.1007/BF00973481
- 16. U. U. Umirbaev, Some algorithmic questions concerning associative algebras, Algebra i Logika 32 (1993), no. 4, 450–470, 474 (Russian, with Russian summary); English transl., Algebra and Logic 32 (1993), no. 4, 244–255 (1994). MR 1286789, https://doi.org/10.1007/BF02261749
- 17. U. U. Umirbaev, Primitive elements of free groups. Russian Math. Surveys 49 (1994), no. 2, 184--185. CMP 94:14
- 18. U. U. Umirbaev, On the rank of elements of free groups. Fundamentalnaya i Prikladnaya Matematika 2 (1966), 313--315. (Russian)
- 19. A. V. Jagžev, On the algorithmic problem of recognizing automorphisms among endomorphisms of free associative algebras of finite rank, Sibirsk. Mat. Zh. 21 (1980), no. 1, 193–199, 238 (Russian). MR 562034
Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 17B01, 16S10, 13F20
Retrieve articles in all journals with MSC (1991): 17B01, 16S10, 13F20
Additional Information
A. A. Mikhalev
Affiliation:
Department of Mechanics and Mathematics, Moscow State University, Moscow 119899, Russia
Email:
aamikh@cnit.math.msu.su
V. E. Shpilrain
Affiliation:
Fakultät für Mathematik, Ruhr-Universität Bochum, 44780 Bochum, Germany
Address at time of publication:
Department of Mathematics, University of California, Santa Barbara, California 93106
Email:
shpil@math.ucsb.edu
A. A. Zolotykh
Affiliation:
Department of Mechanics and Mathematics, Moscow State University, Moscow 119899, Russia
Email:
zolotykh@cnit.math.msu.su
DOI:
https://doi.org/10.1090/S0002-9939-96-03593-9
Received by editor(s):
January 9, 1995
Additional Notes:
The first and third authors were partially supported by the Russian Foundation for Fundamental Research, by the International Science Foundation, and by INTAS
The second author was supported by MINERVA Fellowship.
Communicated by:
Lance W. Small
Article copyright:
© Copyright 1996
American Mathematical Society