Differentiable selection of optimal solutions in parametric linear programming
HTML articles powered by AMS MathViewer
- by Dinh The Luc and Pham Huy Dien
- Proc. Amer. Math. Soc. 125 (1997), 883-892
- DOI: https://doi.org/10.1090/S0002-9939-97-03090-6
- PDF | Request permission
Abstract:
In the present paper we prove that if the data of a parametric linear optimization problem are smooth, the solution map admits a local smooth selection “almost” everywhere. This in particular shows that the set of points where the marginal function of the problem is nondifferentiable is nowhere dense.References
- Jean-Pierre Aubin, Further properties of Lagrange multipliers in nonsmooth optimization, Appl. Math. Optim. 6 (1980), no. 1, 79–90. MR 557056, DOI 10.1007/BF01442884
- Jean-Pierre Aubin and Hélène Frankowska, Set-valued analysis, Systems & Control: Foundations & Applications, vol. 2, Birkhäuser Boston, Inc., Boston, MA, 1990. MR 1048347
- B. Bank, J. Guddat, D. Klatte, B. Kummer, and K. Tammer, Nonlinear parametric optimization, Birkhäuser Verlag, Basel-Boston, Mass., 1983. MR 701243
- C. Berge, Topological spaces, Macmillan, New York 1963.
- George B. Dantzig, Jon Folkman, and Norman Shapiro, On the continuity of the minimum sets of a continuous function, J. Math. Anal. Appl. 17 (1967), 519–548. MR 207426, DOI 10.1016/0022-247X(67)90139-4
- Pham Huy Dien and Dinh The Luc, On the calculation of generalized gradients for a marginal function, Acta Math. Vietnam. 18 (1993), no. 2, 309–326. MR 1292088
- J. P. Evans and F. J. Gould, Stability in nonlinear programming, Operations Res. 18 (1970), 107–118. MR 264984, DOI 10.1287/opre.18.1.107
- Anthony V. Fiacco, Introduction to sensitivity and stability analysis in nonlinear programming, Mathematics in Science and Engineering, vol. 165, Academic Press, Inc., Orlando, FL, 1983. MR 721641
- Jacques Gauvin and François Dubeau, Differential properties of the marginal function in mathematical programming, Math. Programming Stud. 19 (1982), 101–119. Optimality and stability in mathematical programming. MR 669727, DOI 10.1007/bfb0120984
- J.-B. Hiriart-Urruty, Gradients généralisés de fonctions marginales, SIAM J. Control Optim. 16 (1978), no. 2, 301–316 (French, with English summary). MR 493610, DOI 10.1137/0316019
- K. Kuratovskiĭ, Topologiya. Tom I, Izdat. “Mir”, Moscow, 1966 (Russian). Translated from the English by M. Ja. Antonovskiĭ; With a preface by P. S. Aleksandrov. MR 0217750
- J. V. Outrata, On generalized gradients in optimization problems with set-valued constraints, Math. Oper. Res. 15 (1990), no. 4, 626–639. MR 1080469, DOI 10.1287/moor.15.4.626
- Jean-Paul Penot, Compact nets, filters, and relations, J. Math. Anal. Appl. 93 (1983), no. 2, 400–417. MR 700155, DOI 10.1016/0022-247X(83)90184-1
- J.-P. Penot, Preservation of persistence and stability under intersections and operations. I. Persistence, J. Optim. Theory Appl. 79 (1993), no. 3, 525–550. MR 1255285, DOI 10.1007/BF00940557
- Stephen M. Robinson, Stability theory for systems of inequalities. I. Linear systems, SIAM J. Numer. Anal. 12 (1975), no. 5, 754–769. MR 410521, DOI 10.1137/0712056
- Stephen M. Robinson, A characterization of stability in linear programming, Operations Res. 25 (1977), no. 3, 435–447. MR 446490, DOI 10.1287/opre.25.3.435
- R. T. Rockafellar, Lagrange multipliers and subderivatives of optimal value functions in nonlinear programming, Math. Programming Stud. 17 (1982), 28–66. MR 654690, DOI 10.1007/bfb0120958
- J. E. Spingarn, Fixed and variable constraints in sensitivity analysis, SIAM J. Control Optim. 18 (1980), no. 3, 297–310. MR 569019, DOI 10.1137/0318021
- Lionel Thibault, On subdifferentials of optimal value functions, SIAM J. Control Optim. 29 (1991), no. 5, 1019–1036. MR 1110085, DOI 10.1137/0329056
- D. E. Ward, Differential stability in non-Lipschitzian optimization, J. Optim. Theory Appl. 73 (1992), no. 1, 101–120. MR 1152238, DOI 10.1007/BF00940081
- N. D. Yen and P. H. Dien, On differential estimations for marginal functions in mathematical programming problems with inclusion constraints, Lectures Notes in Control and Inform. Sci. vol. 143, Springer-Verlag, Berlin, 1990, pp. 244–251.
Bibliographic Information
- Dinh The Luc
- Affiliation: Institute of Mathematics, P.O. Box 10000 Boho, Hanoi, Vietnam
- Pham Huy Dien
- Affiliation: Institute of Mathematics, P.O. Box 10000 Boho, Hanoi, Vietnam
- Received by editor(s): March 28, 1994
- Received by editor(s) in revised form: September 13, 1994
- Additional Notes: This work was supported in part by the Program on Applied Mathematics and was completed during the authors’ stay at the Laboratory for Applied Mathematics, University of Pau, France
- Communicated by: Joseph S. B. Mitchell
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 883-892
- MSC (1991): Primary 90C31; Secondary 90C05, 49K40
- DOI: https://doi.org/10.1090/S0002-9939-97-03090-6
- MathSciNet review: 1301514