## Positive scalar curvature and odd order abelian fundamental groups

HTML articles powered by AMS MathViewer

- by Reinhard Schultz PDF
- Proc. Amer. Math. Soc.
**125**(1997), 907-915 Request permission

## Abstract:

If a smooth manifold has a Riemannian metric with positive scalar curvature, it follows immediately that the universal covering also has such a metric. The paper establishes a converse if the manifold in question is closed of dimension at least 5 and the fundamental group is an elementary abelian $p$-group of rank 2, where $p$ is an odd prime.## References

- M. F. Atiyah,
*$K$-theory*, 2nd ed., Advanced Book Classics, Addison-Wesley Publishing Company, Advanced Book Program, Redwood City, CA, 1989. Notes by D. W. Anderson. MR**1043170** - Nils Andreas Baas,
*Bordism theories with singularities*, Proceedings of the Advanced Study Institute on Algebraic Topology (Aarhus Univ., Aarhus, 1970) Various Publ. Ser., No. 13, Mat. Inst., Aarhus Univ., Aarhus, 1970, pp. 1–16. MR**0346823** - J. C. Becker and R. E. Schultz,
*Equivariant function spaces and stable homotopy theory. I*, Comment. Math. Helv.**49**(1974), 1–34. MR**339232**, DOI 10.1007/BF02566716 - Richard Holzsager,
*Stable splitting of $K(G,\,1)$*, Proc. Amer. Math. Soc.**31**(1972), 305–306. MR**287540**, DOI 10.1090/S0002-9939-1972-0287540-6 - Thomas W. Hungerford,
*Multiple Künneth formulas for abelian groups*, Trans. Amer. Math. Soc.**118**(1965), 257–275. MR**175953**, DOI 10.1090/S0002-9947-1965-0175953-3 - R. Jung, Ph. D. Thesis, Univ. Mainz, in preparation.
- Sławomir Kwasik and Reinhard Schultz,
*Positive scalar curvature and periodic fundamental groups*, Comment. Math. Helv.**65**(1990), no. 2, 271–286. MR**1057244**, DOI 10.1007/BF02566607 - —,
*Fake spherical spaceforms with constant positive scalar curvature*, Comment. Math. Helv.**71**(1996), 1–40. - Peter S. Landweber,
*Künneth formulas for bordism theories*, Trans. Amer. Math. Soc.**121**(1966), 242–256. MR**192503**, DOI 10.1090/S0002-9947-1966-0192503-7 - Peter S. Landweber,
*Complex bordism of classifying spaces*, Proc. Amer. Math. Soc.**27**(1971), 175–179. MR**268885**, DOI 10.1090/S0002-9939-1971-0268885-1 - Stephen A. Mitchell and Stewart B. Priddy,
*Stable splittings derived from the Steinberg module*, Topology**22**(1983), no. 3, 285–298. MR**710102**, DOI 10.1016/0040-9383(83)90014-9 - Jonathan Rosenberg,
*$C^{\ast }$-algebras, positive scalar curvature, and the Novikov conjecture*, Inst. Hautes Études Sci. Publ. Math.**58**(1983), 197–212 (1984). MR**720934**, DOI 10.1007/BF02953775 - J. Rosenberg,
*$C^\ast$-algebras, positive scalar curvature and the Novikov conjecture. II*, Geometric methods in operator algebras (Kyoto, 1983) Pitman Res. Notes Math. Ser., vol. 123, Longman Sci. Tech., Harlow, 1986, pp. 341–374. MR**866507** - Jonathan Rosenberg,
*$C^\ast$-algebras, positive scalar curvature, and the Novikov conjecture. III*, Topology**25**(1986), no. 3, 319–336. MR**842428**, DOI 10.1016/0040-9383(86)90047-9 - J. Rosenberg and S. Stolz,
*A “stable” version of the Gromov-Lawson conjecture*, Contemp. Math., vol. 181, Amer. Math. Soc., Providence, RI, 1995, pp. 405–418. - Russell J. Rowlett,
*Free actions of a $p$-group on two generators*, Indiana Univ. Math. J.**26**(1977), no. 5, 885–889. MR**458453**, DOI 10.1512/iumj.1977.26.26071

## Additional Information

**Reinhard Schultz**- Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana 47907
- Address at time of publication: Department of Mathematics, University of California, Riverside, California 92521
- MR Author ID: 157165
- Email: schultz@math.ucr.edu
- Received by editor(s): February 13, 1995
- Received by editor(s) in revised form: September 13, 1995
- Communicated by: Thomas Goodwillie
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**125**(1997), 907-915 - MSC (1991): Primary 53C21, 55N15, 57R75; Secondary 53C20, 57R85
- DOI: https://doi.org/10.1090/S0002-9939-97-03683-6
- MathSciNet review: 1363184