## Standard systems for semifinite O$^{*}$-algebras

HTML articles powered by AMS MathViewer

- by Atsushi Inoue PDF
- Proc. Amer. Math. Soc.
**125**(1997), 3303-3312 Request permission

## Abstract:

We shall continue the study of standard systems which make it possible to develop the Tomita-Takesaki theory in O$^*$-algebras. The main purpose of this paper is to give the necessary and sufficient conditions for which a standard system $(\mathcal {M}, \lambda , \lambda ’)$ of an O$^*$-algebra $\mathcal {M}$, a generalized vector $\lambda$ and the commutant $\lambda ’$ is unitarily equivalent to a standard system $\bigl ( \mathcal {N}, K’ \mu , (K’ \mu )’\bigr )$ constructed by a standard tracial generalized vector $\mu$ for an O$^*$-algebra $\mathcal {N}$ and a non-singular positive self-adjoint operator $K’$ affiliated with the commutant $\mathcal {N}’_{ \mathrm {w}}$ of $\mathcal {N}$.## References

- J.-P. Antoine, H. Ogi, A. Inoue, and C. Trapani,
*Standard generalized vectors in the space of Hilbert-Schmidt operators*, Ann. Inst. H. Poincaré Phys. Théor.**63**(1995), no. 2, 177–210 (English, with English and French summaries). MR**1357495** - P. G. Dixon,
*Unbounded operator algebras*, Proc. London Math. Soc. (3)**23**(1971), 53–69. MR**291821**, DOI 10.1112/plms/s3-23.1.53 - S. Gudder and W. Scruggs,
*Unbounded representations of $\ast$-algebras*, Pacific J. Math.**70**(1977), no. 2, 369–382. MR**482269** - Atsushi Inoue,
*On a class of unbounded operator algebras*, Pacific J. Math.**65**(1976), no. 1, 77–95. MR**512382** - Atsushi Inoue,
*An unbounded generalization of the Tomita-Takesaki theory*, Publ. Res. Inst. Math. Sci.**22**(1986), no. 4, 725–765. MR**871264**, DOI 10.2977/prims/1195177629 - Atsushi Inoue,
*Standard generalized vectors for algebras of unbounded operators*, J. Math. Soc. Japan**47**(1995), no. 2, 329–347. MR**1317285**, DOI 10.2969/jmsj/04720329 - Atsushi Inoue and Witold Karwowski,
*Cyclic generalized vectors for algebras of unbounded operators*, Publ. Res. Inst. Math. Sci.**30**(1994), no. 4, 577–601. MR**1308958**, DOI 10.2977/prims/1195165790 - G. Lassner,
*Topological algebras of operators*, Rep. Mathematical Phys.**3**(1972), no. 4, 279–293. MR**322527**, DOI 10.1016/0034-4877(72)90012-2 - Sam Perlis,
*Maximal orders in rational cyclic algebras of composite degree*, Trans. Amer. Math. Soc.**46**(1939), 82–96. MR**15**, DOI 10.1090/S0002-9947-1939-0000015-X - Robert T. Powers,
*Self-adjoint algebras of unbounded operators*, Comm. Math. Phys.**21**(1971), 85–124. MR**283580** - Robert T. Powers,
*Algebras of unbounded operators*, Operator algebras and applications, Part 2 (Kingston, Ont., 1980) Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, R.I., 1982, pp. 389–406. MR**679528** - Marc A. Rieffel and Alfons van Daele,
*A bounded operator approach to Tomita-Takesaki theory*, Pacific J. Math.**69**(1977), no. 1, 187–221. MR**438147** - P. Hebroni,
*Sur les inverses des éléments dérivables dans un anneau abstrait*, C. R. Acad. Sci. Paris**209**(1939), 285–287 (French). MR**14** - Konrad Schmüdgen,
*Unbounded operator algebras and representation theory*, Operator Theory: Advances and Applications, vol. 37, Birkhäuser Verlag, Basel, 1990. MR**1056697**, DOI 10.1007/978-3-0348-7469-4 - M. Takesaki,
*Tomita’s theory of modular Hilbert algebras and its applications*, Lecture Notes in Mathematics, Vol. 128, Springer-Verlag, Berlin-New York, 1970. MR**0270168** - Alfons van Daele,
*A new approach to the Tomita-Takesaki theory of generalized Hilbert algebras*, J. Functional Analysis**15**(1974), 378–393. MR**0346539**, DOI 10.1016/0022-1236(74)90029-9

## Additional Information

**Atsushi Inoue**- Affiliation: Department of Applied Mathematics, Fukuoka University, Fukuoka, 814-80, Japan
- Email: sm010888ssat.fukuoka-u.ac.jp
- Received by editor(s): June 12, 1996
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**125**(1997), 3303-3312 - MSC (1991): Primary 47D40; Secondary 46K15, 46L10
- DOI: https://doi.org/10.1090/S0002-9939-97-03962-2
- MathSciNet review: 1403134