Standard systems for semifinite O$^{*}$-algebras
HTML articles powered by AMS MathViewer
- by Atsushi Inoue
- Proc. Amer. Math. Soc. 125 (1997), 3303-3312
- DOI: https://doi.org/10.1090/S0002-9939-97-03962-2
- PDF | Request permission
Abstract:
We shall continue the study of standard systems which make it possible to develop the Tomita-Takesaki theory in O$^*$-algebras. The main purpose of this paper is to give the necessary and sufficient conditions for which a standard system $(\mathcal {M}, \lambda , \lambda ’)$ of an O$^*$-algebra $\mathcal {M}$, a generalized vector $\lambda$ and the commutant $\lambda ’$ is unitarily equivalent to a standard system $\bigl ( \mathcal {N}, K’ \mu , (K’ \mu )’\bigr )$ constructed by a standard tracial generalized vector $\mu$ for an O$^*$-algebra $\mathcal {N}$ and a non-singular positive self-adjoint operator $K’$ affiliated with the commutant $\mathcal {N}’_{ \mathrm {w}}$ of $\mathcal {N}$.References
- J.-P. Antoine, H. Ogi, A. Inoue, and C. Trapani, Standard generalized vectors in the space of Hilbert-Schmidt operators, Ann. Inst. H. Poincaré Phys. Théor. 63 (1995), no. 2, 177–210 (English, with English and French summaries). MR 1357495
- P. G. Dixon, Unbounded operator algebras, Proc. London Math. Soc. (3) 23 (1971), 53–69. MR 291821, DOI 10.1112/plms/s3-23.1.53
- S. Gudder and W. Scruggs, Unbounded representations of $\ast$-algebras, Pacific J. Math. 70 (1977), no. 2, 369–382. MR 482269
- Atsushi Inoue, On a class of unbounded operator algebras, Pacific J. Math. 65 (1976), no. 1, 77–95. MR 512382
- Atsushi Inoue, An unbounded generalization of the Tomita-Takesaki theory, Publ. Res. Inst. Math. Sci. 22 (1986), no. 4, 725–765. MR 871264, DOI 10.2977/prims/1195177629
- Atsushi Inoue, Standard generalized vectors for algebras of unbounded operators, J. Math. Soc. Japan 47 (1995), no. 2, 329–347. MR 1317285, DOI 10.2969/jmsj/04720329
- Atsushi Inoue and Witold Karwowski, Cyclic generalized vectors for algebras of unbounded operators, Publ. Res. Inst. Math. Sci. 30 (1994), no. 4, 577–601. MR 1308958, DOI 10.2977/prims/1195165790
- G. Lassner, Topological algebras of operators, Rep. Mathematical Phys. 3 (1972), no. 4, 279–293. MR 322527, DOI 10.1016/0034-4877(72)90012-2
- Sam Perlis, Maximal orders in rational cyclic algebras of composite degree, Trans. Amer. Math. Soc. 46 (1939), 82–96. MR 15, DOI 10.1090/S0002-9947-1939-0000015-X
- Robert T. Powers, Self-adjoint algebras of unbounded operators, Comm. Math. Phys. 21 (1971), 85–124. MR 283580
- Robert T. Powers, Algebras of unbounded operators, Operator algebras and applications, Part 2 (Kingston, Ont., 1980) Proc. Sympos. Pure Math., vol. 38, Amer. Math. Soc., Providence, R.I., 1982, pp. 389–406. MR 679528
- Marc A. Rieffel and Alfons van Daele, A bounded operator approach to Tomita-Takesaki theory, Pacific J. Math. 69 (1977), no. 1, 187–221. MR 438147
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
- Konrad Schmüdgen, Unbounded operator algebras and representation theory, Operator Theory: Advances and Applications, vol. 37, Birkhäuser Verlag, Basel, 1990. MR 1056697, DOI 10.1007/978-3-0348-7469-4
- M. Takesaki, Tomita’s theory of modular Hilbert algebras and its applications, Lecture Notes in Mathematics, Vol. 128, Springer-Verlag, Berlin-New York, 1970. MR 0270168
- Alfons van Daele, A new approach to the Tomita-Takesaki theory of generalized Hilbert algebras, J. Functional Analysis 15 (1974), 378–393. MR 0346539, DOI 10.1016/0022-1236(74)90029-9
Bibliographic Information
- Atsushi Inoue
- Affiliation: Department of Applied Mathematics, Fukuoka University, Fukuoka, 814-80, Japan
- Email: sm010888ssat.fukuoka-u.ac.jp
- Received by editor(s): June 12, 1996
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 3303-3312
- MSC (1991): Primary 47D40; Secondary 46K15, 46L10
- DOI: https://doi.org/10.1090/S0002-9939-97-03962-2
- MathSciNet review: 1403134