Invariant subspaces of the maximal domain of the Fourier transform
HTML articles powered by AMS MathViewer
- by Gilbert Muraz and Pawel Szeptycki
- Proc. Amer. Math. Soc. 125 (1997), 3275-3278
- DOI: https://doi.org/10.1090/S0002-9939-97-03973-7
- PDF | Request permission
Abstract:
Translation invariant subspaces of the maximal domain of the Fourier transform (the amalgam of $l^2$ with $L^1$) are characterised: it turns out that in this case all measurable subsets of the dual space are sets of spectral synthesis.References
- N. Aronszajn and P. Szeptycki, On general integral transformations, Math. Ann. 163 (1966), 127–154. MR 190799, DOI 10.1007/BF02052846
- F. P. Bertrandias, C. Dupuis, Analyse harmonique sur les espaces $l^p(L^{p’})$, Ann. Inst. Fourier XXIX (1979), 189-206.
- R. E. Edwards, Fourier series: a modern introduction. Vol. II, Holt, Rinehart and Winston, Inc., New York-Montreal, Que.-London, 1967. MR 0222538
- John J. F. Fournier and James Stewart, Amalgams of $L^p$ and $l^q$, Bull. Amer. Math. Soc. (N.S.) 13 (1985), no. 1, 1–21. MR 788385, DOI 10.1090/S0273-0979-1985-15350-9
- Emilo Gagliardo, On integral transformations with positive kernels, Proceedings AMS, 16, (1965), 429-434
- Yitzhak Katznelson, An introduction to harmonic analysis, John Wiley & Sons, Inc., New York-London-Sydney, 1968. MR 0248482
- A. Olevskii, Translation invariant complemented subspaces in $L^p(\mathbb {R})$, Real Analysis Exchange 21 (1995/96), 16-17.
- P. Szeptycki, On functions and measures whose Fourier transforms are functions, Math. Ann. 179 (1968), 31–41. MR 239353, DOI 10.1007/BF01350206
- P. Szeptycki, On some problems related to the extended domain of the Fourier transform, Rocky Mountain J. Math. 10 (1980), no. 1, 99–103. MR 573865, DOI 10.1216/RMJ-1980-10-1-99
Bibliographic Information
- Gilbert Muraz
- Affiliation: Department of Mathematics, Institut Fourier–Grenoble, UFR-UMR 5582, BP 74, 38402 St. Martin d’Heres Cedex, France
- Email: muraz@fourier.ujf-grenoble.fr
- Pawel Szeptycki
- Affiliation: Department of Mathematics, University of Kansas, Lawrence, Kansas 66045
- Email: szeptycki@kuhub.cc.ukans.edu
- Received by editor(s): August 29, 1995
- Received by editor(s) in revised form: May 20, 1996
- Additional Notes: Supported in part by the General Research Fund, University of Kansas
- Communicated by: J. Marshall Ash
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 3275-3278
- MSC (1991): Primary 42A38, 43A30
- DOI: https://doi.org/10.1090/S0002-9939-97-03973-7
- MathSciNet review: 1402877