Exact multiplicity for some nonlinear elliptic equations in balls
HTML articles powered by AMS MathViewer
- by Juncheng Wei
- Proc. Amer. Math. Soc. 125 (1997), 3235-3242
- DOI: https://doi.org/10.1090/S0002-9939-97-04211-1
- PDF | Request permission
Abstract:
We present the exact multiplicity results for some nonlinear elliptic equations in balls of radius $R$. We prove that there is a critical value $R_{0}$ such that, for $R < R_{0}$, the equation has no solution; when $R=R_{0}$, it has exactly one solution; when $R > R_{0}$, it has exactly two solutions. Our main tool is the bifurcation theorem due to Crandall and Rabinowitz.References
- D. G. Aronson and H. F. Weinberger, Multidimensional nonlinear diffusion arising in population genetics, Adv. in Math. 30 (1978), no. 1, 33–76. MR 511740, DOI 10.1016/0001-8708(78)90130-5
- Michael G. Crandall and Paul H. Rabinowitz, Bifurcation, perturbation of simple eigenvalues and linearized stability, Arch. Rational Mech. Anal. 52 (1973), 161–180. MR 341212, DOI 10.1007/BF00282325
- Philippe Clément and Guido Sweers, Existence and multiplicity results for a semilinear elliptic eigenvalue problem, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 14 (1987), no. 1, 97–121. MR 937538
- E. N. Dancer, On the uniqueness of the positive solution of a singularly perturbed problem, Rocky Mountain J. Math. 25 (1995), no. 3, 957–975. MR 1357103, DOI 10.1216/rmjm/1181072198
- B. Gidas, Wei Ming Ni, and L. Nirenberg, Symmetry and related properties via the maximum principle, Comm. Math. Phys. 68 (1979), no. 3, 209–243. MR 544879
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0
- Jaeduck Jang, On spike solutions of singularly perturbed semilinear Dirichlet problem, J. Differential Equations 114 (1994), no. 2, 370–395. MR 1303033, DOI 10.1006/jdeq.1994.1154
- Philip Korman and Tiancheng Ouyang, Exact multiplicity results for two classes of boundary value problems, Differential Integral Equations 6 (1993), no. 6, 1507–1517. MR 1235208
- Philip Korman, Yi Li, and Tiancheng Ouyang, Exact multiplicity results for boundary value problems with nonlinearities generalising cubic, Proc. Roy. Soc. Edinburgh Sect. A 126 (1996), no. 3, 599–616. MR 1396280, DOI 10.1017/S0308210500022927
- Man Kam Kwong and Li Qun Zhang, Uniqueness of the positive solution of $\Delta u+f(u)=0$ in an annulus, Differential Integral Equations 4 (1991), no. 3, 583–599. MR 1097920
- R. Gardner and L. A. Peletier, The set of positive solutions of semilinear equations in large balls, Proc. Roy. Soc. Edinburgh Sect. A 104 (1986), no. 1-2, 53–72. MR 877892, DOI 10.1017/S0308210500019065
- Wei-Ming Ni and Izumi Takagi, Locating the peaks of least-energy solutions to a semilinear Neumann problem, Duke Math. J. 70 (1993), no. 2, 247–281. MR 1219814, DOI 10.1215/S0012-7094-93-07004-4
- Wei-Ming Ni and Juncheng Wei, On the location and profile of spike-layer solutions to singularly perturbed semilinear Dirichlet problems, Comm. Pure Appl. Math. 48 (1995), no. 7, 731–768. MR 1342381, DOI 10.1002/cpa.3160480704
- W.-M. Ni, I. Takagi and J. Wei, On the location and profile of intermediate solutions to a singularly perturbed semilinear Dirichlet problem, preprint.
- J. Smoller and A. Wasserman, Global bifurcation of steady-state solutions, J. Differential Equations 39 (1981), no. 2, 269–290. MR 607786, DOI 10.1016/0022-0396(81)90077-2
- Shin-Hwa Wang, A correction for a paper by J. Smoller and A. G. Wasserman: “Global bifurcation of steady-state solutions” [J. Differential Equations 39 (1981), no. 2, 269–290; MR0607786 (82d:58056)], J. Differential Equations 77 (1989), no. 1, 199–202. MR 980548, DOI 10.1016/0022-0396(89)90162-9
Bibliographic Information
- Juncheng Wei
- Affiliation: Department of Mathematics, Chinese University of Hong Kong, Shatin, Hong Kong
- MR Author ID: 339847
- ORCID: 0000-0001-5262-477X
- Email: wei@math.cuhk.edu.hk
- Received by editor(s): December 15, 1995
- Communicated by: Jeffrey Rauch
- © Copyright 1997 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 125 (1997), 3235-3242
- MSC (1991): Primary 35B40, 35B45; Secondary 35J40
- DOI: https://doi.org/10.1090/S0002-9939-97-04211-1
- MathSciNet review: 1443172