Every complete doubling metric space carries a doubling measure
HTML articles powered by AMS MathViewer
- by Jouni Luukkainen and Eero Saksman PDF
- Proc. Amer. Math. Soc. 126 (1998), 531-534 Request permission
Abstract:
We prove that a complete metric space $X$ carries a doubling measure if and only if $X$ is doubling and that more precisely the infima of the homogeneity exponents of the doubling measures on $X$ and of the homogeneity exponents of $X$ are equal. We also show that a closed subset $X$ of $\mathbf {R}^{n}$ carries a measure of homogeneity exponent $n$. These results are based on the case of compact $X$ due to Vol$^{\prime }$berg and Konyagin.References
- Patrice Assouad, Étude d’une dimension métrique liée à la possibilité de plongements dans $\textbf {R}^{n}$, C. R. Acad. Sci. Paris Sér. A-B 288 (1979), no. 15, A731–A734 (French, with English summary). MR 532401
- Patrice Assouad, Pseudodistances, facteurs et dimension métrique, Seminar on Harmonic Analysis (1979–1980) (French), Publ. Math. Orsay 80, vol. 7, Univ. Paris XI, Orsay, 1980, pp. 1–33 (French). MR 613989
- Ronald R. Coifman and Guido Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Mathematics, Vol. 242, Springer-Verlag, Berlin-New York, 1971 (French). Étude de certaines intégrales singulières. MR 0499948, DOI 10.1007/BFb0058946
- E. M. Dyn′kin, Free interpolation by functions with a derivative from $H^{1}$, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI) 126 (1983), 77–87 (Russian, with English summary). Investigations on linear operators and the theory of functions, XII. MR 697427
- —, Homogeneous measures on subsets of $\mathbb {R}^n$, Linear and complex analysis problem book (V. P. Havin, S. V. Hruščëv, and N. K. Nikol$^{\prime }$skii, eds.), Lecture Notes in Math., vol. 1043, Springer-Verlag, Berlin, 1984, pp. 698–699.
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I: Structure of topological groups. Integration theory, group representations, Die Grundlehren der mathematischen Wissenschaften, Band 115, Academic Press, Inc., Publishers, New York; Springer-Verlag, Berlin-Göttingen-Heidelberg, 1963. MR 0156915
- Alf Jonsson, Besov spaces on closed subsets of $\textbf {R}^n$, Trans. Amer. Math. Soc. 341 (1994), no. 1, 355–370. MR 1132434, DOI 10.1090/S0002-9947-1994-1132434-6
- Alf Jonsson, Measures satisfying a refined doubling condition and absolute continuity, Proc. Amer. Math. Soc. 123 (1995), no. 8, 2441–2446. MR 1283554, DOI 10.1090/S0002-9939-1995-1283554-3
- J. Luukkainen, Assouad dimension: Antifractal metrization, porous sets, and homogeneous measures, manuscript, 1996.
- A. L. Vol′berg and S. V. Konyagin, A homogeneous measure exists on any compactum in $\textbf {R}^n$, Dokl. Akad. Nauk SSSR 278 (1984), no. 4, 783–786 (Russian). MR 765294
- A. L. Vol′berg and S. V. Konyagin, On measures with the doubling condition, Izv. Akad. Nauk SSSR Ser. Mat. 51 (1987), no. 3, 666–675 (Russian); English transl., Math. USSR-Izv. 30 (1988), no. 3, 629–638. MR 903629
Additional Information
- Jouni Luukkainen
- Affiliation: Department of Mathematics, P.O. Box 4 (Yliopistonkatu 5), FIN-00014 University of Helsinki, Finland
- Email: luukkain@cc.helsinki.fi
- Eero Saksman
- Affiliation: Department of Mathematics, P.O. Box 4 (Yliopistonkatu 5), FIN-00014 University of Helsinki, Finland
- MR Author ID: 315983
- Email: saksman@cc.helsinki.fi
- Received by editor(s): August 20, 1996
- Communicated by: J. Marshall Ash
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 531-534
- MSC (1991): Primary 28A12; Secondary 54F45
- DOI: https://doi.org/10.1090/S0002-9939-98-04201-4
- MathSciNet review: 1443161