On the continuity of the evaluation mapping associated with a group and its character group
HTML articles powered by AMS MathViewer
- by Gerhard Turnwald
- Proc. Amer. Math. Soc. 126 (1998), 3413-3415
- DOI: https://doi.org/10.1090/S0002-9939-98-04412-8
- PDF | Request permission
Abstract:
For an abelian Hausdorff group $G$, let $G^{\ast }$ denote the character group endowed with the compact-open topology and let $\alpha _{G}:G\rightarrow G^{\ast \ast }$ denote the canonical homomorphism. We show that the evaluation mapping from $G^{\ast }\times G$ into the torus is continuous if and only if $G^{\ast }$ is locally compact and $\alpha _{G}$ is continuous. If $\alpha _{G}$ is injective and open, then the evaluation mapping is continuous if and only if $G$ is locally compact. Several examples and counterexamples are given.References
- Wojciech Banaszczyk, Additive subgroups of topological vector spaces, Lecture Notes in Mathematics, vol. 1466, Springer-Verlag, Berlin, 1991. MR 1119302, DOI 10.1007/BFb0089147
- W. W. Comfort and F. Javier Trigos-Arrieta, Remarks on a theorem of Glicksberg, General topology and applications (Staten Island, NY, 1989) Lecture Notes in Pure and Appl. Math., vol. 134, Dekker, New York, 1991, pp. 25–33. MR 1142792
- Susanne Dierolf and Stefan Warken, Some examples in connection with Pontryagin’s duality theorem, Arch. Math. (Basel) 30 (1978), no. 6, 599–605. MR 498950, DOI 10.1007/BF01226107
- Irving Glicksberg, Uniform boundedness for groups, Canadian J. Math. 14 (1962), 269–276. MR 155923, DOI 10.4153/CJM-1962-017-3
- Edwin Hewitt and Kenneth A. Ross, Abstract harmonic analysis. Vol. I, 2nd ed., Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 115, Springer-Verlag, Berlin-New York, 1979. Structure of topological groups, integration theory, group representations. MR 551496, DOI 10.1007/978-1-4419-8638-2
- Morgan Ward, Ring homomorphisms which are also lattice homomorphisms, Amer. J. Math. 61 (1939), 783–787. MR 10, DOI 10.2307/2371336
- Elena Martín Peinador, A reflexive admissible topological group must be locally compact, Proc. Amer. Math. Soc. 123 (1995), no. 11, 3563–3566. MR 1301516, DOI 10.1090/S0002-9939-1995-1301516-4
- Sidney A. Morris, Pontryagin duality and the structure of locally compact abelian groups, London Mathematical Society Lecture Note Series, No. 29, Cambridge University Press, Cambridge-New York-Melbourne, 1977. MR 0442141, DOI 10.1017/CBO9780511600722
- N. Noble, $k$-groups and duality, Trans. Amer. Math. Soc. 151 (1970), 551–561. MR 270070, DOI 10.1090/S0002-9947-1970-0270070-8
- Vladimir Pestov, Free abelian topological groups and the Pontryagin-van Kampen duality, Bull. Austral. Math. Soc. 52 (1995), no. 2, 297–311. MR 1348489, DOI 10.1017/S0004972700014726
- D. Remus, Topological groups without nontrivial characters, General topology and its relations to modern analysis and algebra, VI (Prague, 1986) Res. Exp. Math., vol. 16, Heldermann, Berlin, 1988, pp. 477–484. MR 952630
- P. Hebroni, Sur les inverses des éléments dérivables dans un anneau abstrait, C. R. Acad. Sci. Paris 209 (1939), 285–287 (French). MR 14
Bibliographic Information
- Gerhard Turnwald
- Affiliation: Mathematisches Institut, Universität Tübingen, Auf der Morgenstelle 10, D-72076 Tübingen, Germany
- Email: gerhard.turnwald@uni-tuebingen.de
- Received by editor(s): October 30, 1996
- Received by editor(s) in revised form: March 21, 1997
- Communicated by: Roe Goodman
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 3413-3415
- MSC (1991): Primary 22A05; Secondary 22D35
- DOI: https://doi.org/10.1090/S0002-9939-98-04412-8
- MathSciNet review: 1452831