Plancherel-Pôlya type inequality on spaces of homogeneous type and its applications
HTML articles powered by AMS MathViewer
- by Y.-S. Han
- Proc. Amer. Math. Soc. 126 (1998), 3315-3327
- DOI: https://doi.org/10.1090/S0002-9939-98-04445-1
- PDF | Request permission
Abstract:
In this paper, using the discrete Calderon reproducing formula on spaces of homogeneous type obtained by the author, we obtain the Plancherel-Pôlya type inequalities on spaces of homogeneous type. These inequalities give new characterizations of the Besov spaces $\dot B_p^{\alpha ,q}$ and the Triebel-Lizorkin spaces $\dot F_p^{\alpha ,q}$ on spaces of homogeneous type introduced earlier by the author and E. T. Sawyer and also allow us to generalize these spaces to the case where $p,q\le 1$. Moreover, using these inequalities, we can easily show that the Littlewood-Paley $G$-function and $S$-function are equivalent on spaces of homogeneous type, which gives a new characterization of the Hardy spaces on spaces of homogeneous type introduced by Macias and Segovia.References
- Michael Christ, A $T(b)$ theorem with remarks on analytic capacity and the Cauchy integral, Colloq. Math. 60/61 (1990), no. 2, 601–628. MR 1096400, DOI 10.4064/cm-60-61-2-601-628
- Ronald R. Coifman and Guido Weiss, Analyse harmonique non-commutative sur certains espaces homogènes, Lecture Notes in Mathematics, Vol. 242, Springer-Verlag, Berlin-New York, 1971 (French). Étude de certaines intégrales singulières. MR 0499948, DOI 10.1007/BFb0058946
- G. David, J.-L. Journé, and S. Semmes, Opérateurs de Calderón-Zygmund, fonctions para-accrétives et interpolation, Rev. Mat. Iberoamericana 1 (1985), no. 4, 1–56 (French). MR 850408, DOI 10.4171/RMI/17
- Michael Frazier and Björn Jawerth, A discrete transform and decompositions of distribution spaces, J. Funct. Anal. 93 (1990), no. 1, 34–170. MR 1070037, DOI 10.1016/0022-1236(90)90137-A
- C. Fefferman and E. M. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107–115. MR 284802, DOI 10.2307/2373450
- Yong Sheng Han, Calderón-type reproducing formula and the $Tb$ theorem, Rev. Mat. Iberoamericana 10 (1994), no. 1, 51–91. MR 1271757, DOI 10.4171/RMI/145
- —, Discrete Calderon reproducing formula, preprint.
- Y. S. Han and E. T. Sawyer, Littlewood-Paley theory on spaces of homogeneous type and the classical function spaces, Mem. Amer. Math. Soc. 110 (1994), no. 530, vi+126. MR 1214968, DOI 10.1090/memo/0530
- Yves Meyer, Le lemme de Cotlar et Stein et la continuité $L^2$ des opérateurs définis par des intégrales singulières, Astérisque 131 (1985), 115–125 (French). Colloquium in honor of Laurent Schwartz, Vol. 1 (Palaiseau, 1983). MR 816742
- Roberto A. Macías and Carlos Segovia, Lipschitz functions on spaces of homogeneous type, Adv. in Math. 33 (1979), no. 3, 257–270. MR 546295, DOI 10.1016/0001-8708(79)90012-4
- —, A decomposition into atoms of distributions on spaces of homogeneous type, ibid., 271–309.
Bibliographic Information
- Y.-S. Han
- Affiliation: Department of Mathematics, Auburn University, Auburn, Alabama 36849-5310
- MR Author ID: 209888
- Email: hanyong@mail.auburn.edu
- Received by editor(s): September 19, 1996
- Received by editor(s) in revised form: April 1, 1997
- Communicated by: J. Marshall Ash
- © Copyright 1998 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 126 (1998), 3315-3327
- MSC (1991): Primary 42B25, 46F05
- DOI: https://doi.org/10.1090/S0002-9939-98-04445-1
- MathSciNet review: 1459123