Periodic solutions for nonconvex
differential inclusions
Authors:
Shouchuan Hu, Dimitrios A. Kandilakis and Nikolaos S. Papageorgiou
Journal:
Proc. Amer. Math. Soc. 127 (1999), 89-94
MSC (1991):
Primary 34C25, 34A60
DOI:
https://doi.org/10.1090/S0002-9939-99-04338-5
MathSciNet review:
1451808
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper we prove the existence of periodic solutions for differential inclusions with nonconvex-valued orientor field. Our proof is based on degree theoretic arguments.
- 1. Jean-Pierre Aubin and Arrigo Cellina, Differential inclusions, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 264, Springer-Verlag, Berlin, 1984. Set-valued maps and viability theory. MR 755330
- 2. Alberto Bressan and Giovanni Colombo, Extensions and selections of maps with decomposable values, Studia Math. 90 (1988), no. 1, 69–86. MR 947921, https://doi.org/10.4064/sm-90-1-69-86
- 3. Haïm Brezis, Analyse fonctionnelle, Collection Mathématiques Appliquées pour la Maîtrise. [Collection of Applied Mathematics for the Master’s Degree], Masson, Paris, 1983 (French). Théorie et applications. [Theory and applications]. MR 697382
- 4. Georges Haddad and Jean-Michel Lasry, Periodic solutions of functional-differential inclusions and fixed points of 𝜎-selectionable correspondences, J. Math. Anal. Appl. 96 (1983), no. 2, 295–312. MR 719317, https://doi.org/10.1016/0022-247X(83)90042-2
- 5. Einar Hille and Ralph S. Phillips, Functional analysis and semi-groups, American Mathematical Society, Providence, R. I., 1974. Third printing of the revised edition of 1957; American Mathematical Society Colloquium Publications, Vol. XXXI. MR 0423094
- 6. Shou Chuan Hu and Nikolaos S. Papageorgiou, On the existence of periodic solutions for nonconvex-valued differential inclusions in 𝐑^{𝐍}, Proc. Amer. Math. Soc. 123 (1995), no. 10, 3043–3050. MR 1301503, https://doi.org/10.1090/S0002-9939-1995-1301503-6
- 7. Jack W. Macki, Paolo Nistri, and Pietro Zecca, The existence of periodic solutions to nonautonomous differential inclusions, Proc. Amer. Math. Soc. 104 (1988), no. 3, 840–844. MR 931741, https://doi.org/10.1090/S0002-9939-1988-0931741-X
- 8. J. Mawhin, Topological degree methods in nonlinear boundary value problems, CBMS Regional Conference Series in Mathematics, vol. 40, American Mathematical Society, Providence, R.I., 1979. Expository lectures from the CBMS Regional Conference held at Harvey Mudd College, Claremont, Calif., June 9–15, 1977. MR 525202
- 9. Nikolaos S. Papageorgiou, On infinite-dimensional control systems with state and control constraints, Proc. Indian Acad. Sci. Math. Sci. 100 (1990), no. 1, 65–77. MR 1051092, https://doi.org/10.1007/BF02881116
- 10. Nikolaos S. Papageorgiou, On Fatou’s lemma and parametric integrals for set-valued functions, J. Math. Anal. Appl. 187 (1994), no. 3, 809–825. MR 1298822, https://doi.org/10.1006/jmaa.1994.1391
- 11. Sławomir Plaskacz, Periodic solutions of differential inclusions on compact subsets of 𝑅ⁿ, J. Math. Anal. Appl. 148 (1990), no. 1, 202–212. MR 1052055, https://doi.org/10.1016/0022-247X(90)90038-H
- 12. Daniel H. Wagner, Survey of measurable selection theorems, SIAM J. Control Optim. 15 (1977), no. 5, 859–903. MR 486391, https://doi.org/10.1137/0315056
Retrieve articles in Proceedings of the American Mathematical Society with MSC (1991): 34C25, 34A60
Retrieve articles in all journals with MSC (1991): 34C25, 34A60
Additional Information
Shouchuan Hu
Affiliation:
Department of Mathematics, Southwest Missouri State University, Springfield, Missouri 65804
Email:
hu@math.smsu.edu
Dimitrios A. Kandilakis
Affiliation:
Department of Mathematics, University of the Aegean, 83200 Karlovassi, Samos, Greece
Nikolaos S. Papageorgiou
Affiliation:
Department of Mathematics, National Technical University, Zografou Campus, Athens 15780, Greece
Email:
npapg@math.ntua.gr
DOI:
https://doi.org/10.1090/S0002-9939-99-04338-5
Keywords:
Lower semicontinuous multifunction,
measurable multifunction,
continuous selector,
a priori bound,
compact embedding,
Leray-Schauder degree,
compact homotopy,
homotopy invariance
Received by editor(s):
September 23, 1996
Additional Notes:
The second author’s research was supported by Grant PENED 678(94)
Communicated by:
Hal L. Smith
Article copyright:
© Copyright 1999
American Mathematical Society