Jacobi matrices with absolutely continuous spectrum
HTML articles powered by AMS MathViewer
- by Jan Janas and Serguei Naboko
- Proc. Amer. Math. Soc. 127 (1999), 791-800
- DOI: https://doi.org/10.1090/S0002-9939-99-04586-4
- PDF | Request permission
Abstract:
Let $J$ be a Jacobi matrix defined in $l^2$ as $Re W$, where $W$ is a unilateral weighted shift with nonzero weights $\lambda _k$ such that $\lim _k \lambda _k = 1.$ Define the seqences: $\varepsilon _k:= \frac {\lambda _{k-1}}{\lambda _k} -1,$ $\delta _k:= \frac {\lambda _k -1}{\lambda _k}, \eta _k:= 2 \delta _k + \varepsilon _k.$ If $\varepsilon _k = O(k^{-\alpha }) , \eta _k = O(k^{-\gamma }), \frac {2}{3}< \alpha \leq \gamma , \alpha + \gamma > 3/2$ and $\gamma > 3/4$, then $J$ has an absolutely continuous spectrum covering $(-2,2)$. Moreover, the asymptotics of the solution $Ju = \lambda u, \lambda \in \mathbb {R}$ is also given.References
- Yu. M. Berezanskii, Expansions in Eigenfunctions of Selfadjoint Operators, Naukova Dumka, Kiev, (1965) (in Russian). MR 36:5769
- H. Behncke, Absolute continuity of Hamiltonians with von Neumann Wigner potentials. II, Manuscripta Math. 71 (1991), no. 2, 163–181. MR 1101267, DOI 10.1007/BF02568400
- Tadasi Nakayama, On Frobeniusean algebras. I, Ann. of Math. (2) 40 (1939), 611–633. MR 16, DOI 10.2307/1968946
- J. Dombrowski, Cyclic operators, commutators, and absolutely continuous measures, Proc. Amer. Math. Soc. 100 (1987), no. 3, 457–463. MR 891145, DOI 10.1090/S0002-9939-1987-0891145-4
- D. J. Gilbert and D. B. Pearson, On subordinacy and analysis of the spectrum of one-dimensional Schrödinger operators, J. Math. Anal. Appl. 128 (1987), no. 1, 30–56. MR 915965, DOI 10.1016/0022-247X(87)90212-5
- W. A. Harris Jr. and D. A. Lutz, Asymptotic integration of adiabatic oscillators, J. Math. Anal. Appl. 51 (1975), 76–93. MR 369840, DOI 10.1016/0022-247X(75)90142-0
- J. Janas and S.N. Naboko, On the point spectrum of some Jacobi matrices, JOT, to appear.
- S. Khan and D. B. Pearson, Subordinacy and spectral theory for infinite matrices, Helv. Phys. Acta 65 (1992), no. 4, 505–527. MR 1179528
- A. Kiselev, Absolute continuous spectrum of one-dimensional Schrödinger operators and Jacobi matrices with slowly descreasing potentials, Comm. Math. Phys. 179 (1996), 377-400.
- —, Preservation of the absolutely continuous spectrum of Schrödinger equation under perturbations by slowly decreasing potentials and a.e. convergence of integral operators (1997) (preprint).
- Günter Stolz, Bounded solutions and absolute continuity of Sturm-Liouville operators, J. Math. Anal. Appl. 169 (1992), no. 1, 210–228. MR 1180682, DOI 10.1016/0022-247X(92)90112-Q
- Günter Stolz, Spectral theory for slowly oscillating potentials. I. Jacobi matrices, Manuscripta Math. 84 (1994), no. 3-4, 245–260. MR 1291120, DOI 10.1007/BF02567456
- Joachim Weidmann, Uniform nonsubordinacy and the absolutely continuous spectrum, Analysis 16 (1996), no. 1, 89–99. MR 1384355, DOI 10.1524/anly.1996.16.1.89
Bibliographic Information
- Jan Janas
- Affiliation: Institute of Mathematics, Polish Academy of Sciences, Cracow Branch, Sw. Tomasza 30, 31-027 Krakow, Poland
- Email: najanas@cyf-kr.edu.pl
- Serguei Naboko
- Affiliation: Department of Mathematical Physics, Institute for Physics, St. Petersburg University, Ulianovskaia 1, 198904, St. Petergoff, Russia
- Email: naboko@snoopy.phys.spbu.ru
- Received by editor(s): June 25, 1997
- Additional Notes: The research of the first author was supported by grant PB 2 PO3A 002 13 of the Komitet Badań Naukowych, Warsaw.
- Communicated by: Palle E. T. Jorgensen
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 127 (1999), 791-800
- MSC (1991): Primary 47B37; Secondary 47B39
- DOI: https://doi.org/10.1090/S0002-9939-99-04586-4
- MathSciNet review: 1469415