On the constructible numbers
HTML articles powered by AMS MathViewer
- by Carlos R. Videla
- Proc. Amer. Math. Soc. 127 (1999), 851-860
- DOI: https://doi.org/10.1090/S0002-9939-99-04611-0
- PDF | Request permission
Abstract:
Let $\Omega$ be the field of constructible numbers, i.e. the numbers constructed from a given unit length using ruler and compass. We prove $\widetilde {\mathbb Z}\cap \Omega$ is definable in $\Omega$.References
- Nathan Jacobson, Basic algebra. I, W. H. Freeman and Co., San Francisco, Calif., 1974. MR 0356989
- Serge Lang, Algebraic number theory, Addison-Wesley Publishing Co., Inc., Reading, Mass.-London-Don Mills, Ont., 1970. MR 0282947
- A. Macintyre and A. Wilkie, On the decidability of the real exponential field, Oxford Univ., 1993, preprint.
- Jürgen Neukirch, Class field theory, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 280, Springer-Verlag, Berlin, 1986. MR 819231, DOI 10.1007/978-3-642-82465-4
- Morgan Ward and R. P. Dilworth, The lattice theory of ova, Ann. of Math. (2) 40 (1939), 600–608. MR 11, DOI 10.2307/1968944
- R. S. Rumely, Undecidability and definability for the theory of global fields, Trans. Amer. Math. Soc. 262 (1980), no. 1, 195–217. MR 583852, DOI 10.1090/S0002-9947-1980-0583852-6
- Morgan Ward, Ring homomorphisms which are also lattice homomorphisms, Amer. J. Math. 61 (1939), 783–787. MR 10, DOI 10.2307/2371336
- C. Videla, Definability of the ring of integers of pro-$p$ extensions of number fields, in preparation.
Bibliographic Information
- Carlos R. Videla
- Affiliation: Departamento de Matemáticas, CINVESTAV-IPN, Av. IPN No. 2508, 07000 México D.F., Mexico
- MR Author ID: 178355
- Email: cvidela@math.cinvestav.mx
- Received by editor(s): March 20, 1996
- Received by editor(s) in revised form: June 25, 1997
- Communicated by: Andreas R. Blass
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 127 (1999), 851-860
- MSC (1991): Primary 03C68, 11R04
- DOI: https://doi.org/10.1090/S0002-9939-99-04611-0
- MathSciNet review: 1469439