Solving the $p$-Laplacian on manifolds
HTML articles powered by AMS MathViewer
- by Marc Troyanov
- Proc. Amer. Math. Soc. 128 (2000), 541-545
- DOI: https://doi.org/10.1090/S0002-9939-99-05035-2
- Published electronically: July 8, 1999
- PDF | Request permission
Abstract:
We prove in this paper that the equation $\Delta _{p}u+h=0$ on a $p$-hyperbolic manifold $M$ has a solution with $p$-integrable gradient for any bounded measurable function $h : M \to \mathbb R$ with compact support.References
- Pavel Drábek, Nonlinear eigenvalue problem for $p$-Laplacian in $\mathbf R^N$, Math. Nachr. 173 (1995), 131–139. MR 1336957, DOI 10.1002/mana.19951730109
- V. Gol’dshtein and M. Troyanov, Sur la non résolubilité du p-laplacien sur $\mathbb R^n$, C. R. Acad. Sci. Paris 326 (1998), 1185–1187.
- E. Hebey, Sobolev spaces on Riemannian manifolds, Springer Lect. Notes in Math. 1635.
- Juha Heinonen, Tero Kilpeläinen, and Olli Martio, Nonlinear potential theory of degenerate elliptic equations, Oxford Mathematical Monographs, The Clarendon Press, Oxford University Press, New York, 1993. Oxford Science Publications. MR 1207810
- Peter Tolksdorf, Regularity for a more general class of quasilinear elliptic equations, J. Differential Equations 51 (1984), no. 1, 126–150. MR 727034, DOI 10.1016/0022-0396(84)90105-0
- M. Troyanov, Parabolicity of manifolds, préprint EPFL, 1997.
Bibliographic Information
- Marc Troyanov
- Affiliation: Départment de Mathématiques, Ecole Polytechnique Fédérale de Lausanne, 1015 Lausanne, Switzerland
- MR Author ID: 234039
- Email: troyanov@math.epfl.ch
- Received by editor(s): April 6, 1998
- Published electronically: July 8, 1999
- Communicated by: Peter Li
- © Copyright 1999 American Mathematical Society
- Journal: Proc. Amer. Math. Soc. 128 (2000), 541-545
- MSC (1991): Primary 31C15, 31C12, 31C45; Secondary 53C20
- DOI: https://doi.org/10.1090/S0002-9939-99-05035-2
- MathSciNet review: 1622993