## Simple complete Boolean algebras

HTML articles powered by AMS MathViewer

- by Thomas Jech and Saharon Shelah PDF
- Proc. Amer. Math. Soc.
**129**(2001), 543-549 Request permission

## Abstract:

For every regular cardinal $\kappa$ there exists a simple complete Boolean algebra with $\kappa$ generators.## References

- M. Bekkali and R. Bonnet,
*Rigid Boolean Algebras*, in: “Handbook of Boolean Algebras” vol. 2 (J. D. Monk and R. Bonnet, eds.,) p. 637–678, Elsevier Sci. Publ. 1989. - Thomas Jech,
*À propos d’algèbres de Boole rigides et minimales*, C. R. Acad. Sci. Paris Sér. A-B**274**(1972), A371–A372 (French). MR**289378** - Thomas J. Jech,
*Simple complete Boolean algebras*, Israel J. Math.**18**(1974), 1–10. MR**351812**, DOI 10.1007/BF02758124 - Thomas Jech and Saharon Shelah,
*A complete Boolean algebra that has no proper atomless complete subalgebra*, J. Algebra**182**(1996), no. 3, 748–755. MR**1398120**, DOI 10.1006/jabr.1996.0199 - Ronald Jensen,
*Definable sets of minimal degree*, Mathematical logic and foundations of set theory (Proc. Internat. Colloq., Jerusalem, 1968) North-Holland, Amsterdam, 1970, pp. 122–128. MR**0306002** - Akihiro Kanamori,
*Perfect-set forcing for uncountable cardinals*, Ann. Math. Logic**19**(1980), no. 1-2, 97–114. MR**593029**, DOI 10.1016/0003-4843(80)90021-2 - Kenneth McAloon,
*Consistency results about ordinal definability*, Ann. Math. Logic**2**(1970/71), no. 4, 449–467. MR**292670**, DOI 10.1016/0003-4843(71)90005-2 - Kenneth McAloon,
*Les algèbres de Boole rigides et minimales*, C. R. Acad. Sci. Paris Sér. A-B**272**(1971), A89–A91 (French). MR**272610** - Gerald E. Sacks,
*Forcing with perfect closed sets*, Axiomatic Set Theory (Proc. Sympos. Pure Math., Vol. XIII, Part I, Univ. California, Los Angeles, Calif., 1967) Amer. Math. Soc., Providence, R.I., 1971, pp. 331–355. MR**0276079** - Saharon Shelah,
*Why there are many nonisomorphic models for unsuperstable theories*, Proceedings of the International Congress of Mathematicians (Vancouver, B. C., 1974) Canad. Math. Congress, Montreal, Que., 1975, pp. 259–263. MR**0422015**

## Additional Information

**Thomas Jech**- Affiliation: Department of Mathematics, The Pennsylvania State University, 218 McAllister Bldg., University Park, Pennsylvania 16802
- Address at time of publication: Center for Theoretical Study, Jilská 1, 110 00 Praha 1, Czech Republic
- Email: jech@math.psu.edu, jech@cts.cuni.cz
**Saharon Shelah**- Affiliation: Institute of Mathematics, The Hebrew University of Jerusalem, 91904 Jerusalem, Israel
- MR Author ID: 160185
- ORCID: 0000-0003-0462-3152
- Email: shelah@math.rutgers.edu
- Received by editor(s): January 13, 1999
- Received by editor(s) in revised form: April 30, 1999
- Published electronically: July 27, 2000
- Additional Notes: The authors were supported in part by National Science Foundation grants DMS–98-02783 and DMS–97-04477.
- Communicated by: Carl G. Jockusch, Jr.
- © Copyright 2000 American Mathematical Society
- Journal: Proc. Amer. Math. Soc.
**129**(2001), 543-549 - MSC (1991): Primary 03Exx
- DOI: https://doi.org/10.1090/S0002-9939-00-05566-0
- MathSciNet review: 1707521